题意:三维平面上有n个点,每个点的坐标为(x[i],y[i],z[i]),n为偶数

现在要求取n/2次,每次取走一对点(x,y),要求没有未被取走的点在以x和y为对角点的矩形中

要求给出任意一组合法方案

n<=5e4,abs(x[i],y[i],z[i])<=1e8

思路:我觉得托老爷的官方题解的google机翻已经够简明了

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
//typedef pair<ll,ll>P;
#define N 200010
#define M 200010
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
ll INF=1e15;
int dx[]={-,,,};
int dy[]={,,-,}; struct node
{
int x,y,z,id;
}a[N],b[N]; bool cmp(node a,node b)
{
if(a.x!=b.x) return a.x<b.x;
if(a.y!=b.y) return a.y<b.y;
return a.z<b.z;
} int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} int main()
{
int n=read();
rep(i,,n)
{
a[i].x=read(),a[i].y=read(),a[i].z=read();
a[i].id=i;
}
sort(a+,a+n+,cmp);
int i,j,k,m=;
for(i=;i<=n;)
{
j=i;
while(j<=n&&a[i].x==a[j].x&&a[i].y==a[j].y) j++;
for(k=i;k+<=j;k+=) printf("%d %d\n",a[k].id,a[k+].id);
if(k==j-) b[++m]=a[k];
i=j;
}
n=;
for(i=;i<=m;)
{
j=i;
while(j<=m&&b[i].x==b[j].x) j++;
for(k=i;k+<=j;k+=) printf("%d %d\n",b[k].id,b[k+].id);
if(k==j-) a[++n]=b[k];
i=j;
}
for(i=;i<=n;i+=) printf("%d %d\n",a[i].id,a[i+].id);
return ;
}

【CF1237C】Balanced Removals(降维)的更多相关文章

  1. C2. Balanced Removals (Harder) (幾何、思維)

    Codeforce 1237C2 Balanced Removals (Harder) (幾何.思維) 今天我們來看看CF1237C2 題目連結 題目 給你偶數個三維座標點,每次選其中兩點,如果兩點為 ...

  2. CF1237C2 【Balanced Removals (Harder)】

    这么妙的题怎么没人发题解啊 首先这是三维的,我们可以对其进行降维打击 先考虑一维怎么做? 我们可以对其该维坐标进行排序,按照顺序输出,可能会多余一个 那拓展到二维呢? 我们可以把它转化成一维,分成很多 ...

  3. Codeforces 1237C2. Balanced Removals (Harder)

    传送门 先来考虑一下二维时的情况,那么对于 $x$ 相同的点,我们按 $y$ 排序,然后相邻的一对对消除 最后 $x$ 坐标相同的点最多剩下一个,那么此时所有点的 $x$ 坐标都不一样 再按 $x$ ...

  4. Codeforces Global Round 5

    传送门 A. Balanced Rating Changes 签到,分正负搞一下就行. B. Balanced Tunnel 题意: 给出\(n\)辆车的进洞顺序和出洞顺序,问有多少量车实现了洞中超车 ...

  5. 从NLP任务中文本向量的降维问题,引出LSH(Locality Sensitive Hash 局部敏感哈希)算法及其思想的讨论

    1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据 ...

  6. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  7. 用scikit-learn进行LDA降维

    在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-le ...

  8. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  9. scikit-learn一般实例之四:使用管道和GridSearchCV选择降维

    本例构建一个管道来进行降维和预测的工作:先降维,接着通过支持向量分类器进行预测.本例将演示与在网格搜索过程进行单变量特征选择相比,怎样使用GrideSearchCV和管道来优化单一的CV跑无监督的PC ...

随机推荐

  1. Android - Retrofit 2.0 使用教程(含实例讲解)

    链接:https://blog.csdn.net/carson_ho/article/details/73732076

  2. Centos中使用Docker部署Apollo

    采用微服务开发框架开发项目时会涉及多个系统,如果要更改配置参数需要在多个系统间逐一更改,比较费时,而且容易遗漏,效率低下,次问题可以采用Apollo配置中心的方式解决,下面将介绍如何配置: 准备环境: ...

  3. layui动态渲染select等组件并初始化赋值失败

    描诉:有一个用户信息form表单,其中有部门单选框,数据库中有一张dept(部门)表,要动态渲染出所有部门,并默认选中用户所在部门 关键代码: html页面 <div class="l ...

  4. TMS320F28335——下载程序到flash中

    一.让CCS软件支持Flash烧写 添加F28335.cmd文件 如图屏蔽掉25335_RAM_lnk.cmd 2.支持从Flash中拷贝文件到RAM中 添加DSP2832x_MemCopy.c 在主 ...

  5. win 10 自带 Ubuntu 系统的文件位置

    win 10 自带 Ubuntu 系统的文件位置 Ubuntu 作为最为流行 Linux 系统中的一种,是用来学习 Linux 相关知识是最好不过的选择.专门搞一个 Ubuntu 系统的电脑不太现实, ...

  6. 剑指offer-动态规划-贪心算法--剪绳子-python

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  7. struts2_对Map进行双层迭代

    转自:struts2_对Map进行双层迭代 //后台数据 public String execute() throws Exception { Map<String, List<Produ ...

  8. 2019 湖湘杯 Reverse WP

    0x01 arguement 下载链接:https://www.lanzous.com/i7atyhc 1.准备 获取到信息: 32位的文件 upx加密文件 在控制台打开文件 使用"upx ...

  9. STL 之 queue

    默认容器为双端队列deque 常用的函数有: empty Test whether container is empty (public member function ) size Return s ...

  10. C#批量将数据插入SQLServer数据库

    Database db = CreateDatabase();                var varConnnection = db.CreateConnection();     //获取连 ...