题意:三维平面上有n个点,每个点的坐标为(x[i],y[i],z[i]),n为偶数

现在要求取n/2次,每次取走一对点(x,y),要求没有未被取走的点在以x和y为对角点的矩形中

要求给出任意一组合法方案

n<=5e4,abs(x[i],y[i],z[i])<=1e8

思路:我觉得托老爷的官方题解的google机翻已经够简明了

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
//typedef pair<ll,ll>P;
#define N 200010
#define M 200010
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
ll INF=1e15;
int dx[]={-,,,};
int dy[]={,,-,}; struct node
{
int x,y,z,id;
}a[N],b[N]; bool cmp(node a,node b)
{
if(a.x!=b.x) return a.x<b.x;
if(a.y!=b.y) return a.y<b.y;
return a.z<b.z;
} int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} int main()
{
int n=read();
rep(i,,n)
{
a[i].x=read(),a[i].y=read(),a[i].z=read();
a[i].id=i;
}
sort(a+,a+n+,cmp);
int i,j,k,m=;
for(i=;i<=n;)
{
j=i;
while(j<=n&&a[i].x==a[j].x&&a[i].y==a[j].y) j++;
for(k=i;k+<=j;k+=) printf("%d %d\n",a[k].id,a[k+].id);
if(k==j-) b[++m]=a[k];
i=j;
}
n=;
for(i=;i<=m;)
{
j=i;
while(j<=m&&b[i].x==b[j].x) j++;
for(k=i;k+<=j;k+=) printf("%d %d\n",b[k].id,b[k+].id);
if(k==j-) a[++n]=b[k];
i=j;
}
for(i=;i<=n;i+=) printf("%d %d\n",a[i].id,a[i+].id);
return ;
}

【CF1237C】Balanced Removals(降维)的更多相关文章

  1. C2. Balanced Removals (Harder) (幾何、思維)

    Codeforce 1237C2 Balanced Removals (Harder) (幾何.思維) 今天我們來看看CF1237C2 題目連結 題目 給你偶數個三維座標點,每次選其中兩點,如果兩點為 ...

  2. CF1237C2 【Balanced Removals (Harder)】

    这么妙的题怎么没人发题解啊 首先这是三维的,我们可以对其进行降维打击 先考虑一维怎么做? 我们可以对其该维坐标进行排序,按照顺序输出,可能会多余一个 那拓展到二维呢? 我们可以把它转化成一维,分成很多 ...

  3. Codeforces 1237C2. Balanced Removals (Harder)

    传送门 先来考虑一下二维时的情况,那么对于 $x$ 相同的点,我们按 $y$ 排序,然后相邻的一对对消除 最后 $x$ 坐标相同的点最多剩下一个,那么此时所有点的 $x$ 坐标都不一样 再按 $x$ ...

  4. Codeforces Global Round 5

    传送门 A. Balanced Rating Changes 签到,分正负搞一下就行. B. Balanced Tunnel 题意: 给出\(n\)辆车的进洞顺序和出洞顺序,问有多少量车实现了洞中超车 ...

  5. 从NLP任务中文本向量的降维问题,引出LSH(Locality Sensitive Hash 局部敏感哈希)算法及其思想的讨论

    1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据 ...

  6. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  7. 用scikit-learn进行LDA降维

    在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-le ...

  8. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  9. scikit-learn一般实例之四:使用管道和GridSearchCV选择降维

    本例构建一个管道来进行降维和预测的工作:先降维,接着通过支持向量分类器进行预测.本例将演示与在网格搜索过程进行单变量特征选择相比,怎样使用GrideSearchCV和管道来优化单一的CV跑无监督的PC ...

随机推荐

  1. Snow的追寻--线段树维护树的直径

    Snow终于得知母亲是谁,他现在要出发寻找母亲.王国中的路由于某种特殊原因,成为了一棵有n个节点的根节点为1的树,但由于"Birds are everywhere.",他得到了种种 ...

  2. vue封装一些常用组件loading、switch、progress

    vue封装一些常用组件loading.switch.progress github文档https://github.com/zengjielin/vue-component-library loadi ...

  3. kafka消费者脚本无法启动问题

    console-consumer can't rebalance after 4 retries 解决方案:kafka0.9版本换成1.0版本 究竟是怎么回事我也不知道

  4. OSPF与ACL 综合应用

    1.企业内网运行OSPF路由协议,区域规划如图所示:2.财务和研发所在的区域不受其他区域链路不稳定性影响:3.R1.R2.R3只允许被IT登录管理:4.YF和CW之间不能互通,但都可以与IT互通:5. ...

  5. spring cloud gateway自定义过滤器

    在API网关spring cloud gateway和负载均衡框架ribbon实战文章中,主要实现网关与负载均衡等基本功能,详见代码.本节内容将继续围绕此代码展开,主要讲解spring cloud g ...

  6. [转帖]探秘华为(一):华为和H3C(华三)的爱恨情仇史!

    探秘华为(一):华为和H3C(华三)的爱恨情仇史! https://baijiahao.baidu.com/s?id=1620703498823290828&wfr=spider&fo ...

  7. [转帖]mysql.sock的作用

    mysql.sock的作用 链接:http://blog.itpub.net/28602568/viewspace-1797619/ 标题:mysql.sock的作用 作者:lōττéry©版权所有[ ...

  8. kubeadm初始化kubernetes集群

    有两种方式安装集群: 1.手动安装各个节点的各个组件,安装极其复杂困难. 2.使用工具:kubeadm kubeadm 是官方提供的专门部署集群的管理工具. 1. 在kubeadm下每个节点都需要安装 ...

  9. Windows下图文详解Mongodb安装及配置

    这两天接触了MongoDB数据库,发现和mysql数据库还是有很大差别的,同时使用前的配置看起来有些繁杂,踩过不少坑,其实只要一步一步搞清了,并不难. 接下来,我就整理下整个安装及配置过程. 安装的M ...

  10. java基础笔记)(5)

    xml文件:树形存储格式:通过相同的xml文件实现不同的软件.不同的操作系统.不同的平台之间的信息通讯: 声明xml文件: <?xml version="1.0" encod ...