G.subsequence 1(dp + 排列组合)
subsequence 1
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
Because the answer may be huge, please output the answer modulo 998244353.
输入描述:
The first line contains one integer T, indicating that there are T tests. Each test consists of 3 lines. The first line of each test contains two integers n and m, denoting the length of strings s and t. The second line of each test contains the string s. The third line of each test contains the string t. * 1≤m≤n≤30001 \le m \le n \le 30001≤m≤n≤3000.
输出描述:
For each test, output one integer in a line representing the answer modulo 998244353.
算法:dp + 排列组合
题意:给你两个字符串s和t。找出字符串s中多有多少个子串大于字符串t。
题解:dp的作用是计算字符串s的子串与字符串t相同长度时的数量,而下面那个循环式计算字符串s的子串长度大于字符串t时的数量,两者相加就是最终所求的数量
注意:杨辉三角就是按照组合数的性质来的,读者可以自行证明。
#include <iostream>
#include <cstdio>
#include <memory.h> using namespace std; const int maxn = ;
const int mod = ; typedef long long ll; ll C[maxn][maxn]; //以杨辉三角的形式来存取组合数,表示C(i, j)
ll dp[maxn][maxn]; //表示字符串s从第i个位置开始,字符串t从第j个位置开始,有多少个字串所匹配
char s[maxn], t[maxn]; int main() {
//预处理组合数
for(int i = ; i <= ; i++) {
for(int j = ; j <= i; j++) {
if(i == j || j == ) {
C[i][j] = ;
} else {
C[i][j] = (C[i - ][j - ] + C[i - ][j]) % mod;
}
}
}
int T;
scanf("%d", &T);
while(T--) {
int n, m;
scanf("%d %d", &n, &m);
scanf("%s %s", s + , t + );
for(int i = ; i < n + ; i++) {
for(int j = ; j < m + ; j++) {
dp[i][j] = ;
}
}
//从后往前推,这样便于计算数量
for(int j = m; j > ; j--) {
for(int i = n; i > ; i--) {
dp[i][j] = dp[i + ][j]; //把上一次记录的值加进来
if(s[i] == t[j]) { //当相同时,你就不需要算当前这两个相同的字符的值,并把上一次没有算那两个字符的值加进来
dp[i][j] = (dp[i][j] + dp[i + ][j + ]) % mod;
}
if(s[i] > t[j]) { //当大于时,你就需要找出需要填充的组合数
dp[i][j] = (dp[i][j] + C[n - i][m - j]) % mod;
}
}
}
ll ans = dp[][];
//下面这个循环是找出在s中大于字符串t长度的子串数量
for(int i = ; i <= n; i++) {
if(s[i] == '') { //当第一个字符为0时,不用计算
continue;
}
for(int j = m; j <= n; j++) { //每次需要添加m到n个字符
ans = (ans + C[n - i][j]) % mod;
}
}
cout << ans << endl;
}
return ;
}
G.subsequence 1(dp + 排列组合)的更多相关文章
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
- LightOJ1005 Rooks(DP/排列组合)
题目是在n*n的棋盘上放k个车使其不互相攻击的方案数. 首先可以明确的是n*n最多只能合法地放n个车,即每一行都指派一个列去放车. dp[i][j]表示棋盘前i行总共放了j个车的方案数 dp[0][0 ...
- HDU 5816 状压DP&排列组合
---恢复内容开始--- Hearthstone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java ...
- bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...
- ACdream 1412 DP+排列组合
2-3 Trees Problem Description 2-3 tree is an elegant data structure invented by John Hopcroft. It is ...
- 【noi 2.6_9288】&【hdu 1133】Buy the Ticket(DP / 排列组合 Catalan+高精度除法)
题意:有m个人有一张50元的纸币,n个人有一张100元的纸币.他们要在一个原始存金为0元的售票处买一张50元的票,问一共有几种方案数. 解法:(学习了他人的推导后~) 1.Catalan数的应用7的变 ...
- 【BZOJ-1974】auction代码拍卖会 DP + 排列组合
1974: [Sdoi2010]auction 代码拍卖会 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 305 Solved: 122[Submit ...
- HDU 5151 Sit sit sit 区间DP + 排列组合
Sit sit sit 问题描述 在一个XX大学中有NN张椅子排成一排,椅子上都没有人,每张椅子都有颜色,分别为蓝色或者红色. 接下来依次来了NN个学生,标号依次为1,2,3,...,N. 对于每个学 ...
随机推荐
- Luogu P4878 [USACO05DEC]布局
题目 差分约束模板. 注意判负环需要建一个超级源点到每个点连一条\(0\)的边.因为\(1\)不一定能到达所有的点. #include<bits/stdc++.h> #define pi ...
- centos 7 源码安装 mysql 5.6
下载 mysql 安装包 $ wget https://cdn.mysql.com//Downloads/MySQL-5.6/mysql-5.6.44.tar.gz # or $ curl -O ht ...
- O022、如何使用 OpenStack CLI
参考https://www.cnblogs.com/CloudMan6/p/5402490.html 本节首先讨论如何删除image,然后介绍OpenStack CLI 的使用方法,最后讨论如何 ...
- 这38个小技巧告诉你如何快速学习MySQL数据库
1.如何快速掌握MySQL? ⑴培养兴趣兴趣是最好的老师,不论学习什么知识,兴趣都可以极大地提高学习效率.当然学习MySQL 5.6也不例外.⑵夯实基础计算机领域的技术非常强调基础,刚开始学习可能还认 ...
- python 模块使用
模块使用 定义:模块就像一个工具包一样,里面有很多工具(函数.类),使用时需要通过import导入. 分类: 标准库:random.sys.os.time 第三方:就是好人已经写好的特定功能的模块,你 ...
- Hyperledger Fabric 环境搭建(1)
1,Fabric的程序模块组成 Fabric不是一个单独的程序而是由一组模块组成,这些模块中的每一个都是一个可独立运行的可执行文件. (1)peer 主节点模块,负责存储区块链数据,运行维护链码: ( ...
- 免费使用Google
这里需要借助一下`梯子`,这里有教程 点击进入 如果没有谷歌浏览器,进入下载最新版谷歌浏览器,进入下载,不要移动它的安装位置,选择默认位置, 如果已经安装了谷歌浏览器,打开赛风之后,选择设置 进行安装 ...
- 安卓端调用h5界面js方法和ios端调用h5界面js方法
备注:本人为h5开发人员,不懂安卓和ios,这是开发小伙伴对接联调的主代码. 1.iOS端调用h5界面js方法: 2.安卓端调用h5界面js方法: @Override protect ...
- On Java 8
On Java 8本书原作者为 [美] Bruce Eckel,即<Java 编程思想>的作者.本书是事实上的 <Java 编程思想>第五版.<Java 编程思想> ...
- Excel 曝Power Query安全漏洞
近日,Mimecast 威胁中心的安全研究人员,发现了微软 Excel 电子表格应用程序的一个新漏洞,获致 1.2 亿用户易受网络攻击.其指出,该安全漏洞意味着攻击者可以利用 Excel 的 Powe ...