subsequence 1

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述

You are given two strings s and t composed by digits (characters '0' ∼\sim∼ '9'). The length of s is n and the length of t is m. The first character of both s and t aren't '0'.

Please calculate the number of valid subsequences of s that are larger than t if viewed as positive integers. A subsequence is valid if and only if its first character is not '0'.
Two subsequences are different if they are composed of different locations in the original string. For example, string "1223" has 2 different subsequences "23".

Because the answer may be huge, please output the answer modulo 998244353.

输入描述:

The first line contains one integer T, indicating that there are T tests.

Each test consists of 3 lines.

The first line of each test contains two integers n and m, denoting the length of strings s and t.

The second line of each test contains the string s.

The third line of each test contains the string t.

* 1≤m≤n≤30001 \le m \le n \le 30001≤m≤n≤3000.
* sum of n in all tests ≤3000\le 3000≤3000.
 
* the first character of both s and t aren't '0'.

输出描述:

For each test, output one integer in a line representing the answer modulo 998244353.
示例1

输入

复制

3
4 2
1234
13
4 2
1034
13
4 1
1111
2

输出

复制

9
6
11

说明

For the last test, there are 6 subsequences "11", 4 subsequcnes "111" and 1 subsequence "1111" that are valid, so the answer is 11.

算法:dp + 排列组合

题意:给你两个字符串s和t。找出字符串s中多有多少个子串大于字符串t。

题解:dp的作用是计算字符串s的子串与字符串t相同长度时的数量,而下面那个循环式计算字符串s的子串长度大于字符串t时的数量,两者相加就是最终所求的数量

注意:杨辉三角就是按照组合数的性质来的,读者可以自行证明。

#include <iostream>
#include <cstdio>
#include <memory.h> using namespace std; const int maxn = ;
const int mod = ; typedef long long ll; ll C[maxn][maxn]; //以杨辉三角的形式来存取组合数,表示C(i, j)
ll dp[maxn][maxn]; //表示字符串s从第i个位置开始,字符串t从第j个位置开始,有多少个字串所匹配
char s[maxn], t[maxn]; int main() {
//预处理组合数
for(int i = ; i <= ; i++) {
for(int j = ; j <= i; j++) {
if(i == j || j == ) {
C[i][j] = ;
} else {
C[i][j] = (C[i - ][j - ] + C[i - ][j]) % mod;
}
}
}
int T;
scanf("%d", &T);
while(T--) {
int n, m;
scanf("%d %d", &n, &m);
scanf("%s %s", s + , t + );
for(int i = ; i < n + ; i++) {
for(int j = ; j < m + ; j++) {
dp[i][j] = ;
}
}
//从后往前推,这样便于计算数量
for(int j = m; j > ; j--) {
for(int i = n; i > ; i--) {
dp[i][j] = dp[i + ][j]; //把上一次记录的值加进来
if(s[i] == t[j]) { //当相同时,你就不需要算当前这两个相同的字符的值,并把上一次没有算那两个字符的值加进来
dp[i][j] = (dp[i][j] + dp[i + ][j + ]) % mod;
}
if(s[i] > t[j]) { //当大于时,你就需要找出需要填充的组合数
dp[i][j] = (dp[i][j] + C[n - i][m - j]) % mod;
}
}
}
ll ans = dp[][];
//下面这个循环是找出在s中大于字符串t长度的子串数量
for(int i = ; i <= n; i++) {
if(s[i] == '') { //当第一个字符为0时,不用计算
continue;
}
for(int j = m; j <= n; j++) { //每次需要添加m到n个字符
ans = (ans + C[n - i][j]) % mod;
}
}
cout << ans << endl;
}
return ;
}

G.subsequence 1(dp + 排列组合)的更多相关文章

  1. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

  2. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  3. LightOJ1005 Rooks(DP/排列组合)

    题目是在n*n的棋盘上放k个车使其不互相攻击的方案数. 首先可以明确的是n*n最多只能合法地放n个车,即每一行都指派一个列去放车. dp[i][j]表示棋盘前i行总共放了j个车的方案数 dp[0][0 ...

  4. HDU 5816 状压DP&排列组合

    ---恢复内容开始--- Hearthstone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

  5. bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...

  6. ACdream 1412 DP+排列组合

    2-3 Trees Problem Description 2-3 tree is an elegant data structure invented by John Hopcroft. It is ...

  7. 【noi 2.6_9288】&【hdu 1133】Buy the Ticket(DP / 排列组合 Catalan+高精度除法)

    题意:有m个人有一张50元的纸币,n个人有一张100元的纸币.他们要在一个原始存金为0元的售票处买一张50元的票,问一共有几种方案数. 解法:(学习了他人的推导后~) 1.Catalan数的应用7的变 ...

  8. 【BZOJ-1974】auction代码拍卖会 DP + 排列组合

    1974: [Sdoi2010]auction 代码拍卖会 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 305  Solved: 122[Submit ...

  9. HDU 5151 Sit sit sit 区间DP + 排列组合

    Sit sit sit 问题描述 在一个XX大学中有NN张椅子排成一排,椅子上都没有人,每张椅子都有颜色,分别为蓝色或者红色. 接下来依次来了NN个学生,标号依次为1,2,3,...,N. 对于每个学 ...

随机推荐

  1. Luogu P4878 [USACO05DEC]布局

    题目 差分约束模板. 注意判负环需要建一个超级源点到每个点连一条\(0\)的边.因为\(1\)不一定能到达所有的点. #include<bits/stdc++.h> #define pi ...

  2. centos 7 源码安装 mysql 5.6

    下载 mysql 安装包 $ wget https://cdn.mysql.com//Downloads/MySQL-5.6/mysql-5.6.44.tar.gz # or $ curl -O ht ...

  3. O022、如何使用 OpenStack CLI

    参考https://www.cnblogs.com/CloudMan6/p/5402490.html   本节首先讨论如何删除image,然后介绍OpenStack CLI 的使用方法,最后讨论如何  ...

  4. 这38个小技巧告诉你如何快速学习MySQL数据库

    1.如何快速掌握MySQL? ⑴培养兴趣兴趣是最好的老师,不论学习什么知识,兴趣都可以极大地提高学习效率.当然学习MySQL 5.6也不例外.⑵夯实基础计算机领域的技术非常强调基础,刚开始学习可能还认 ...

  5. python 模块使用

    模块使用 定义:模块就像一个工具包一样,里面有很多工具(函数.类),使用时需要通过import导入. 分类: 标准库:random.sys.os.time 第三方:就是好人已经写好的特定功能的模块,你 ...

  6. Hyperledger Fabric 环境搭建(1)

    1,Fabric的程序模块组成 Fabric不是一个单独的程序而是由一组模块组成,这些模块中的每一个都是一个可独立运行的可执行文件. (1)peer 主节点模块,负责存储区块链数据,运行维护链码: ( ...

  7. 免费使用Google

    这里需要借助一下`梯子`,这里有教程 点击进入 如果没有谷歌浏览器,进入下载最新版谷歌浏览器,进入下载,不要移动它的安装位置,选择默认位置, 如果已经安装了谷歌浏览器,打开赛风之后,选择设置 进行安装 ...

  8. 安卓端调用h5界面js方法和ios端调用h5界面js方法

      备注:本人为h5开发人员,不懂安卓和ios,这是开发小伙伴对接联调的主代码. 1.iOS端调用h5界面js方法:     2.安卓端调用h5界面js方法: @Override    protect ...

  9. On Java 8

    On Java 8本书原作者为 [美] Bruce Eckel,即<Java 编程思想>的作者.本书是事实上的 <Java 编程思想>第五版.<Java 编程思想> ...

  10. Excel 曝Power Query安全漏洞

    近日,Mimecast 威胁中心的安全研究人员,发现了微软 Excel 电子表格应用程序的一个新漏洞,获致 1.2 亿用户易受网络攻击.其指出,该安全漏洞意味着攻击者可以利用 Excel 的 Powe ...