G.subsequence 1(dp + 排列组合)
subsequence 1
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
Because the answer may be huge, please output the answer modulo 998244353.
输入描述:
The first line contains one integer T, indicating that there are T tests. Each test consists of 3 lines. The first line of each test contains two integers n and m, denoting the length of strings s and t. The second line of each test contains the string s. The third line of each test contains the string t. * 1≤m≤n≤30001 \le m \le n \le 30001≤m≤n≤3000.
输出描述:
For each test, output one integer in a line representing the answer modulo 998244353.
算法:dp + 排列组合
题意:给你两个字符串s和t。找出字符串s中多有多少个子串大于字符串t。
题解:dp的作用是计算字符串s的子串与字符串t相同长度时的数量,而下面那个循环式计算字符串s的子串长度大于字符串t时的数量,两者相加就是最终所求的数量
注意:杨辉三角就是按照组合数的性质来的,读者可以自行证明。
#include <iostream>
#include <cstdio>
#include <memory.h> using namespace std; const int maxn = ;
const int mod = ; typedef long long ll; ll C[maxn][maxn]; //以杨辉三角的形式来存取组合数,表示C(i, j)
ll dp[maxn][maxn]; //表示字符串s从第i个位置开始,字符串t从第j个位置开始,有多少个字串所匹配
char s[maxn], t[maxn]; int main() {
//预处理组合数
for(int i = ; i <= ; i++) {
for(int j = ; j <= i; j++) {
if(i == j || j == ) {
C[i][j] = ;
} else {
C[i][j] = (C[i - ][j - ] + C[i - ][j]) % mod;
}
}
}
int T;
scanf("%d", &T);
while(T--) {
int n, m;
scanf("%d %d", &n, &m);
scanf("%s %s", s + , t + );
for(int i = ; i < n + ; i++) {
for(int j = ; j < m + ; j++) {
dp[i][j] = ;
}
}
//从后往前推,这样便于计算数量
for(int j = m; j > ; j--) {
for(int i = n; i > ; i--) {
dp[i][j] = dp[i + ][j]; //把上一次记录的值加进来
if(s[i] == t[j]) { //当相同时,你就不需要算当前这两个相同的字符的值,并把上一次没有算那两个字符的值加进来
dp[i][j] = (dp[i][j] + dp[i + ][j + ]) % mod;
}
if(s[i] > t[j]) { //当大于时,你就需要找出需要填充的组合数
dp[i][j] = (dp[i][j] + C[n - i][m - j]) % mod;
}
}
}
ll ans = dp[][];
//下面这个循环是找出在s中大于字符串t长度的子串数量
for(int i = ; i <= n; i++) {
if(s[i] == '') { //当第一个字符为0时,不用计算
continue;
}
for(int j = m; j <= n; j++) { //每次需要添加m到n个字符
ans = (ans + C[n - i][j]) % mod;
}
}
cout << ans << endl;
}
return ;
}
G.subsequence 1(dp + 排列组合)的更多相关文章
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
- LightOJ1005 Rooks(DP/排列组合)
题目是在n*n的棋盘上放k个车使其不互相攻击的方案数. 首先可以明确的是n*n最多只能合法地放n个车,即每一行都指派一个列去放车. dp[i][j]表示棋盘前i行总共放了j个车的方案数 dp[0][0 ...
- HDU 5816 状压DP&排列组合
---恢复内容开始--- Hearthstone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java ...
- bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...
- ACdream 1412 DP+排列组合
2-3 Trees Problem Description 2-3 tree is an elegant data structure invented by John Hopcroft. It is ...
- 【noi 2.6_9288】&【hdu 1133】Buy the Ticket(DP / 排列组合 Catalan+高精度除法)
题意:有m个人有一张50元的纸币,n个人有一张100元的纸币.他们要在一个原始存金为0元的售票处买一张50元的票,问一共有几种方案数. 解法:(学习了他人的推导后~) 1.Catalan数的应用7的变 ...
- 【BZOJ-1974】auction代码拍卖会 DP + 排列组合
1974: [Sdoi2010]auction 代码拍卖会 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 305 Solved: 122[Submit ...
- HDU 5151 Sit sit sit 区间DP + 排列组合
Sit sit sit 问题描述 在一个XX大学中有NN张椅子排成一排,椅子上都没有人,每张椅子都有颜色,分别为蓝色或者红色. 接下来依次来了NN个学生,标号依次为1,2,3,...,N. 对于每个学 ...
随机推荐
- HTML5自学
1.1 标题文本 在HTML5中,文本的结构除了以行和段落出现之外,还可以作为标题存在,通常一篇文档最基本的结构就是由不同级别的标题和正文组成的. 例如1:(中国门户网站) https://www ...
- 小白学习django第六站-http相关
请求与相应 HttpRequest对象API def home(request): print('path:', request.path) print('mothod:', request.meth ...
- Dubbo架构
原文链接http://dubbo.apache.org 架构图 节点角色说明 节点 角色说明 Provider 暴露服务的服务提供方 Consumer 调用远程服务的服务消费方 Registry 服务 ...
- 简化SpringMVC配置
映射器处理器和适配器是可以省略的 为什么可以省略?因为有默认配置 SpringMVC的默认配置
- 第六篇 CSS样式 背景、背景图、文本、链接
元素背景.文本(字体)样式.链接 这里我们只学习常用的一些,更多的扩展就要同学们自己去了解,或者下方评论. 这里我们为了简便,用的是CSS的内嵌形式. 元素背景: 我们写模块的时候,有的时候为了区 ...
- 转载:Linux目录文件的权限查看与修改
######################################## ...
- JVM内存区域划分总结
发现网上有两个版本的JVM内存划分,一个是按照<深入理解JVM虚拟机>上的版本,包含程序计数器等,按照是否线程共享划分. 另一个我觉得更好记一些,也更适合我自己,在这里记录一下. 首先上思 ...
- 12、rpm
1.什么是rpm 由红帽开发用于软件包的安装 升级 卸载 查询 2.rpm包是什么样? 组成部分是什么样的? zip-3.0-11.el7.x86_64.rpm #el7 zip-3.0-1. el6 ...
- Reflector破译
一:安装: 这个在包里,自己安装 二:注册 1. 断网2. 运行.NET Reflector,点击Help -> Activate 3. 运行注册机,复制注册机生成的序列号,粘贴到.NET Re ...
- dedecms织梦网站本地迁移到服务器后,后台更新栏目文档提示模板文件不存在,无法解析文档!的解决办法
解决办法: 1.系统设置-系统基本参数-站点设置-网页主页链接,替换为空 2.系统设置-系统基本参数-核心设置-DedeCMS安装目录,替换为空