D2. Equalizing by Division (hard version)

涉及下标运算一定要注意下标是否越界!!!

思路,暴力判断以每个数字为到达态最小花费

#include<bits/stdc++.h>
using namespace std;
#define sc(x) scanf("%I64d",&x);
#define read(A) for(int i=1;i<=n;i++)scanf("%I64d",&A[i]);
#define int long long
#define P pair<int,int>
#define fi first
#define se second
#define endl '\n'
#define ll long long
#define maxn 200000+10
int n,m,T;
int A[maxn];
int B[];
int ch(int x,int y)
{
for(int i=;i<=y;i++){
x/=;
}
return x;
}
int Ans=1e18;
int check(int x,int t)
{
int _x=x;
if(x==)
{
int ans=;
for(int i=B[]; i<n; i++)
{
int c=A[i]; while(c)
{
ans++;
c/=;
if(ans>Ans){
return 1e18;
}
}
t++;
//cout<<t<<m<<endl;
if(t==m)
{
return ans;
}
}
}
int ans=;
int k=;
int y=;
x*=;
while(x<=&&t<m)
{
for(int i=; i<k; i++)
{
if(ch(x+i,y)!=_x)break;
if(x+i>)break;
if(x+i<=&&B[x+i]>=m-t)
{
ans+=(m-t)*y;
if(ans>Ans)return 1e18;
t=m;
return ans;
}
else
{
ans+=(B[x+i])*y;
if(ans>Ans)return 1e18;
t+=B[x+i];
} }
x*=;
y++;
k*=;
}
if(m<=t)return ans;
else
return 1e18;
}
signed main()
{
sc(n);
sc(m);
for(int i=; i<n; i++)
{
sc(A[i]);
//cout<<A[i]<<endl;
B[A[i]]++;
if(B[A[i]]>=m)
{
puts("");
return ;
}
}
sort(A,A+n);
int t=; for(int i=; i<=; i++)
{
t=check(i,B[i]);
// if(t<ans)cout<<i<<endl;
Ans=min(t,Ans);
}
cout<<Ans<<'\n'; }

D2. Equalizing by Division (hard version)的更多相关文章

  1. codeforces Equalizing by Division (easy version)

    output standard output The only difference between easy and hard versions is the number of elements ...

  2. D2. Remove the Substring (hard version)(思维 )

    D2. Remove the Substring (hard version) time limit per test 2 seconds memory limit per test 256 mega ...

  3. D2. Remove the Substring (hard version)

    D2. Remove the Substring (hard version) 给字符串s,t,保证t为s的子序列,求s删掉最长多长的子串,满足t仍为s的子序列 记录t中每个字母在s中出现的最右的位置 ...

  4. CF1213D Equalizing by Division

    easy version hard version 问题分析 直接从hard version入手.不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的.这样总共有\(O(n\log ...

  5. Codeforces 1249 D2. Too Many Segments (hard version)

    传送门 贪心 对于第一个不合法的位置,我们显然要通过删除几个覆盖了它的区间来使这个位置合法 显然删右端点更靠右的区间是更优的,所以就考虑优先删右端点靠右的,然后再考虑下一个不合法位置 用一个 $set ...

  6. codeforces 1249 D2 Too Many Segments (hard version) 贪心+树状数组

    题意 给定n个线段,线段可以相交,第\(i\)个线段覆盖的区间为\([l_i,r_i]\),问最少删除多少个线段让覆盖每个点的线段数量小于等于k. 分析 从左往右扫每个点\(x\),若覆盖点\(x\) ...

  7. Codeforces 1213D Equalizing by Division

    cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...

  8. Equalizing by Division

    The only difference between easy and hard versions is the number of elements in the array. You are g ...

  9. Codeforces Round #579 (Div. 3) D2. Remove the Substring (hard version) (思维,贪心)

    题意:给你一个模式串\(t\),现在要在主串\(s\)中删除多个子串,使得得到的\(s\)的子序列依然包含\(t\),问能删除的最长子串长度. 题解:首先,我们不难想到,我们可以选择\(s\)头部到最 ...

随机推荐

  1. Mybatis(二) SQL映射文件

    SQL映射文件 单条件查询 1. 在UserMapper接口添加抽象方法 //根据用户名模糊查询 List<User> getUserListByName(); 2. 在UserMappe ...

  2. Java类初始化和实例初始化过程

    1.类初始化过程 一个类要创建实例需要先加载并初始化该类 main方法所在的类需要先加载和初始化 一个子类要初始化需要先初始化父类 一个类初始化就是执行<client>()方法(编译器生成 ...

  3. 【6.18校内test】T1多项式输出

    日常题前废话: 首先so amazing 的一件事,因为在洛谷上立下了的flag,然后这次考试前两道题都是刚刚做过不久的题emmm(相当于白送200吗qwq,但是这阻挡不了我第三题不会的脚步qwq) ...

  4. 洛谷 P3258 松鼠的新家 题解

    题面 貌似这道题暴力加玄学优化就可以AC? 下面是正解: 1.树链剖分: 我们在u到v之间都放一个糖果,可以将松鼠它家u到v的糖果数都加1.每一次将a[i]到a[i+1] (a数组是访问顺序)的节点加 ...

  5. rust学习小记(1)

    本文的学习资料来自 Rust 程序设计语言 简体中文版 推荐用idea来写rust,装好插件rust和toml即可 cargo(包管理) 可以使用 cargo build 或 cargo check  ...

  6. C语言 --- 高级指针

    1. 指针赋值: C语言允许使用赋值运算进行指针的赋值,前提是两个指针具有相同的类型.                 int i,*p,*q;                 p = &i; ...

  7. ftp读取图片并转Base64

    public String download(String ftpUrl,String sfzh){ FTPClient ftpClient = new FTPClient(); InputStrea ...

  8. python处理json文件(Yelp数据集)

    python脚本处理yelp数据集 import sys import json import re import os import time if __name__ == '__main__': ...

  9. luogu P1758 [NOI2009]管道取珠

    luogu 这个题中的平方有点东西,考虑他的组合意义,也就是做这个过程两次,如果两次得到的结果一样就给答案+1,所以可以考虑dp,设\(f_{i,j,k,l}\)表示第一个过程中上面取到的第\(i\) ...

  10. $id(id)函数

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...