1、初始化k个簇中心。

2、更新所有样本点簇归属:样本点到哪个簇中心点最近就属于哪个簇。

3、重新计算每个簇的中心点(直到簇中心点不再变化或达到更新最大次数)

#k-means伪代码
import numpy as np
import copy
#计算欧氏距离
def get_distance(X,Y):
return np.sum((X-Y)**2)**0.5
def calc_mean(X): #计算中心点,每一维取均值
l=len(X[0])
list_mean=[]
for i in range(l):
s=0
for j in X:
s+=j[i]
m=s/len(X)
list_mean.append(m)
return list_mean def k_means(x_train,k,max_iter):
num_iter = 0
#初始簇中心
cluster_center = x_train[:k]
pre_cluster_center = copy.deep_copy(cluster_center) #上一次的簇中心点
#开始迭代
while num_iter<max_iter:
#临时变量
clusters_data={} #字典{簇下标:坐标}
for i in x_train:
cluster_dists=[]
for index,cluster in enumerate(cluster_center):
distance=get_distance(i,cluster)
cluster_dists.append((index,distance)) #每个样本到中心点的距离 cluster_dists.sort(key=lambda x:x[1]) #升序
min_index,min_dist=cluster_dists[0] #取距离最近 if min_index not in clusters_data:
clusters_data[min_index]=[]
clusters_data[min_index].append(i) #数据添加到临时变量中 #更新簇中心点
for index in clusters_data:
cluster_center[index]=calc_mean(clusters_data[index])
if pre_cluster_center == cluster_center:
break #如果簇中心点不再变化,那么结束
else:
pre_cluster_center = copy.deep_copy(cluster_center) #拷贝一下
return cluster_center #返回最终的簇中心点

k-means伪代码的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  3. 快速查找无序数组中的第K大数?

    1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高 ...

  4. 网络费用流-最小k路径覆盖

    多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. numpy.ones_like(a, dtype=None, order='K', subok=True)返回和原矩阵一样形状的1矩阵

    Return an array of ones with the same shape and type as a given array. Parameters: a : array_like Th ...

  6. [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法

    前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...

  7. <机器学习>无监督学习算法总结

    本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方 ...

  8. 机器学习算法的基本知识(使用Python和R代码)

    本篇文章是原文的译文,然后自己对其中做了一些修改和添加内容(随机森林和降维算法).文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法 ...

  9. 当我们在谈论kmeans(2)

        本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2 ...

  10. scikit-learn包的学习资料

    http://scikit-learn.org/stable/modules/clustering.html#k-means http://my.oschina.net/u/175377/blog/8 ...

随机推荐

  1. No module named 'pip'

    https://blog.csdn.net/wuyepiaoxue789/article/details/84033651 可以首先执行  python -m ensurepip  然后执行 pyth ...

  2. Android 消息传递机制

    线程间消息传递机制 1.消息怎么发送的? 我们都知道当调用Handler发送消息的时候,不管是调用 sendMessage,sendEmptyMessage,sendMessageDelayed还是其 ...

  3. JMeter接口测试印象篇(win10)

    参考博文1:https://www.cnblogs.com/suim1218/p/9257369.html 参考博文2:https://blog.csdn.net/u011541946/article ...

  4. TCP/IP笔记——TCP特点、首部格式、滑动窗口

    这次总结一下TCP相关的知识. TCP主要特点 面向连接:在通信前必须建立连接(只是逻辑上存在,而不是物理连接) 只能有两个端点:即只能一对一通信(所以通常p2p是用UDP实现的) 提供可靠交付服务: ...

  5. gcc数据结构对齐之:why.

    gcc 支持 aligned 和 packed 属性指定数据对齐,那么在了解对齐规则之前,需要解决第一个以为,我们为什么需要数据对齐?请看下图: 相信学过汇编的朋友都很熟悉这张图,这张图就是CPU与内 ...

  6. document与Object的关系

    window与Objet 1. window.__proto__ === Window.prototype 2. window.__proto__.__proto__ === 窗口属性(WindowP ...

  7. ActionsChains类鼠标事件和Keys类键盘事件

    一.鼠标事件 如,移动.点击.释放.单击.右击,拖动等 键盘事件如:输入.回车.粘贴.复制.剪贴等 使用ActionsChains类和Keys类之前都必须先导入       from selenium ...

  8. visual studio git 忽略文件配置模板

    ## Ignore Visual Studio temporary files, build results, and## files generated by popular Visual Stud ...

  9. mybatis一对多关联关系映射

    mybatis一对多关联关系映射 一对多关联关系只需要在多的一方引入少的一方的主键作为外键即可.在实体类中就是反过来,在少的一方添加多的一方,声明一个List 属性名 作为少的一方的属性. 用户和订单 ...

  10. xcode中进行git代码管理

    http://www.cocoachina.com/ios/20140524/8536.html