1、初始化k个簇中心。

2、更新所有样本点簇归属:样本点到哪个簇中心点最近就属于哪个簇。

3、重新计算每个簇的中心点(直到簇中心点不再变化或达到更新最大次数)

#k-means伪代码
import numpy as np
import copy
#计算欧氏距离
def get_distance(X,Y):
return np.sum((X-Y)**2)**0.5
def calc_mean(X): #计算中心点,每一维取均值
l=len(X[0])
list_mean=[]
for i in range(l):
s=0
for j in X:
s+=j[i]
m=s/len(X)
list_mean.append(m)
return list_mean def k_means(x_train,k,max_iter):
num_iter = 0
#初始簇中心
cluster_center = x_train[:k]
pre_cluster_center = copy.deep_copy(cluster_center) #上一次的簇中心点
#开始迭代
while num_iter<max_iter:
#临时变量
clusters_data={} #字典{簇下标:坐标}
for i in x_train:
cluster_dists=[]
for index,cluster in enumerate(cluster_center):
distance=get_distance(i,cluster)
cluster_dists.append((index,distance)) #每个样本到中心点的距离 cluster_dists.sort(key=lambda x:x[1]) #升序
min_index,min_dist=cluster_dists[0] #取距离最近 if min_index not in clusters_data:
clusters_data[min_index]=[]
clusters_data[min_index].append(i) #数据添加到临时变量中 #更新簇中心点
for index in clusters_data:
cluster_center[index]=calc_mean(clusters_data[index])
if pre_cluster_center == cluster_center:
break #如果簇中心点不再变化,那么结束
else:
pre_cluster_center = copy.deep_copy(cluster_center) #拷贝一下
return cluster_center #返回最终的簇中心点

k-means伪代码的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  3. 快速查找无序数组中的第K大数?

    1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高 ...

  4. 网络费用流-最小k路径覆盖

    多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. numpy.ones_like(a, dtype=None, order='K', subok=True)返回和原矩阵一样形状的1矩阵

    Return an array of ones with the same shape and type as a given array. Parameters: a : array_like Th ...

  6. [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法

    前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...

  7. <机器学习>无监督学习算法总结

    本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方 ...

  8. 机器学习算法的基本知识(使用Python和R代码)

    本篇文章是原文的译文,然后自己对其中做了一些修改和添加内容(随机森林和降维算法).文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法 ...

  9. 当我们在谈论kmeans(2)

        本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2 ...

  10. scikit-learn包的学习资料

    http://scikit-learn.org/stable/modules/clustering.html#k-means http://my.oschina.net/u/175377/blog/8 ...

随机推荐

  1. RabbitMQ问题解决

    1.访问http://localhost:15672/#/,输入用户名.密码登录报错500 解决方法:在快捷程序处找到RabbitMQ Service -stop停止服务,然后再点击RabbitMQ ...

  2. ansible最佳实战部署nginx

    1.先看下整体目录架构 [root@bogon ~]# cd /etc/ansible/ [root@bogon ansible]# tree . ├── ansible.cfg ├── group_ ...

  3. playbook部署mangodb

    playbook文件 [root@localhost ~]# cat deploy_mongo.yaml --- - hosts: webservers become: yes become_meth ...

  4. zabbix图形刷新延迟解决

    环境: 服务端    ip :192.168.1.204       hostname:www.test.com 服务端    ip :192.168.1.206       hostname:www ...

  5. win server2012r2上发布网站常见错误 "HTTP 错误 500.19 请求的页面的相关配置数据无效" 解决办法

    HTTP 错误 500.19 - Internal Server Error无法访问请求的页面,因为该页的相关配置数据无效. 问题“详细错误信息模块 IIS Web Core通知 BeginReque ...

  6. Python日期存入elasticsearch的坑

    今天在消费kafka数据到elasticsearch(以下简称es)中的时候遇到一个问题,也是一个坑,折腾了半天,后来发现得来全不费工夫,全是白忙活啊!!! 问题如下: kafka数据中有一个字段是时 ...

  7. mycat是什么?你是怎么理解的?你们公司分库分表的分片规则是什么?搭建mycat环境常用的配置文件有哪些?

    1.mycat是什么? 国内最活跃的.性能最好的开源数据库分库分表中间件 一个彻底开源的,面向企业应用开发的大数据库集群 支持事务.ACID.可以替代MySQL的加强版数据库 一个可以视为MySQL集 ...

  8. spring5的基本组成(6个模块)

    1:数据访问及集成(Data Access/Integeration):jdbc,orm,oxm,jms,transactions ——由 spring-jdbc.spring-tx.spring-o ...

  9. python 并发编程 基于gevent模块实现并发的套接字通信

    之前线程池是通过操作系统切换线程,现在是程序自己控制,比操作系统切换效率要高 服务端 from gevent import monkey;monkey.patch_all() import geven ...

  10. Spring boot启动后没有生成日志文件问题排错

    我的配置是: logging.file.name=spring-boot.log logging.file.path=D:/log/ 系统启动后日志文件没有生成 原因:一开始以为这两个属性是配合着使用 ...