机器学习基石笔记:Homework #4 Regularization&Validation相关习题
原文地址:https://www.jianshu.com/p/3f7d4aa6a7cf
问题描述
程序实现
# coding: utf-8
import numpy as np
import math
import matplotlib.pyplot as plt
def sign(x):
if(x>=0):
return 1
else:
return -1
def read_data(dataFile):
with open(dataFile,'r') as f:
lines=f.readlines()
data_list=[]
for line in lines:
line=line.strip().split()
data_list.append([1.0] + [float(l) for l in line])
dataArray=np.array(data_list)
num_data=dataArray.shape[0]
num_dim=dataArray.shape[1]-1
dataX=dataArray[:,:-1].reshape((num_data,num_dim))
dataY=dataArray[:,-1].reshape((num_data,1))
return dataX,dataY
def w_reg(dataX,dataY,namuta):
num_dim=dataX.shape[1]
dataX_T=np.transpose(dataX)
tmp=np.dot(np.linalg.inv(np.dot(dataX_T,dataX)+namuta*np.eye(num_dim)),dataX_T)
return np.dot(tmp,dataY)
def pred(wREG,dataX):
pred=np.dot(dataX,wREG)
num_data=dataX.shape[0]
for i in range(num_data):
pred[i][0]=sign(pred[i][0])
return pred
def zero_one_cost(pred,dataY):
return np.sum(pred!=dataY)/dataY.shape[0]
if __name__=="__main__":
# train
dataX,dataY=read_data("hw4_train.dat")
print("\n13")
wREG=w_reg(dataX,dataY,namuta=10)
Ein=zero_one_cost(pred(wREG,dataX),dataY)
print("the Ein on the train set: ",Ein)
# test
testX,testY=read_data("hw4_test.dat")
Eout=zero_one_cost(pred(wREG,testX),testY)
print("the Eout on the test set: ",Eout)
l=[2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10]
print("\n14")
Ein_list=[]
Eout_list=[]
for i in l:
namuta=math.pow(10,i)
wREG=w_reg(dataX,dataY,namuta)
Ein_list.append(zero_one_cost(pred(wREG,dataX),dataY))
Eout_list.append(zero_one_cost(pred(wREG,testX),testY))
id_in=Ein_list.index(min(Ein_list))
plt.figure()
plt.plot(np.power(np.full(shape=(len(l),),fill_value=10,dtype=np.int32),l),Ein_list)
plt.xlabel("namuta")
plt.xlim((math.pow(10,l[0]),math.pow(10,l[-1])))
plt.ylabel("Ein")
plt.savefig("14.png")
print("the namuta with the minimun Ein: ",math.pow(10,l[id_in]))
print("the Eout on such namuta: ", Eout_list[id_in])
print("\n15")
id_out = Eout_list.index(min(Eout_list))
plt.figure()
plt.plot(np.power(np.full(shape=(len(l),),fill_value=10,dtype=np.int32),l),Eout_list)
plt.xlabel("namuta")
plt.xlim((math.pow(10,l[0]),math.pow(10,l[-1])))
plt.ylabel("Eout")
plt.savefig("15.png")
print("the namuta with the minimun Eout: ", math.pow(10, l[id_out]))
trainX=dataX[:120]
trainY=dataY[:120]
validX=dataX[120:]
validY=dataY[120:]
# validation
print("\n16")
Ein_list.clear()
Eout_list.clear()
Eval_list=[]
for i in l:
namuta=math.pow(10,i)
wREG=w_reg(trainX,trainY,namuta)
Ein_list.append(zero_one_cost(pred(wREG,trainX),trainY))
Eout_list.append(zero_one_cost(pred(wREG,testX),testY))
Eval_list.append(zero_one_cost(pred(wREG,validX),validY))
id_in=Ein_list.index(min(Ein_list))
plt.figure()
plt.plot(np.power(np.full(shape=(len(l),),fill_value=10,dtype=np.int32),l),Ein_list)
plt.xlabel("namuta")
plt.xlim((math.pow(10,l[0]),math.pow(10,l[-1])))
plt.ylabel("Ein")
plt.savefig("16.png")
print("the namuta with the minimun Ein: ",math.pow(10,l[id_in]))
print("the Eout on such namuta: ", Eout_list[id_in])
print("\n17")
id_val=Eval_list.index(min(Eval_list))
plt.figure()
plt.plot(np.power(np.full(shape=(len(l),),fill_value=10,dtype=np.int32),l),Eval_list)
plt.xlabel("namuta")
plt.xlim((math.pow(10,l[0]),math.pow(10,l[-1])))
plt.ylabel("Eval")
plt.savefig("17.png")
print("the namuta with the minimun Eval: ",math.pow(10,l[id_val]))
print("the Eout on such namuta: ", Eout_list[id_val])
print("\n18")
wREG=w_reg(dataX,dataY,namuta=math.pow(10,l[id_val]))
Ein=zero_one_cost(pred(wREG,dataX),dataY)
Eout = zero_one_cost(pred(wREG, testX), testY)
print("Ein: ",Ein)
print("Eout: ",Eout)
# 5-fold cross validation
print("\n19")
Eval_list.clear()
splX=np.split(dataX,5,axis=0)
splY=np.split(dataY,5,axis=0)
for j in l:
Eval = 0
namuta=math.pow(10,j)
for i in range(5):
li=[a for a in range(5)]
li.pop(i)
trainX=np.concatenate([splX[k] for k in li],axis=0)
trainY=np.concatenate([splY[k] for k in li],axis=0)
wREG=w_reg(trainX,trainY,namuta)
Eval+=zero_one_cost(pred(wREG,splX[i]),splY[i])/5
Eval_list.append(Eval)
id_val=Eval_list.index(min(Eval_list))
plt.figure()
plt.plot(np.power(np.full(shape=(len(l),),fill_value=10,dtype=np.int32),l),Eval_list)
plt.xlabel("namuta")
plt.xlim((math.pow(10,l[0]),math.pow(10,l[-1])))
plt.ylabel("Ecv")
plt.savefig("19.png")
print("the namuta with the minimun Ecv: ",math.pow(10,l[id_val]))
print("\n20")
wREG=w_reg(dataX,dataY,namuta=math.pow(10,l[id_val]))
Ein=zero_one_cost(pred(wREG,dataX),dataY)
Eout = zero_one_cost(pred(wREG, testX), testY)
print("Ein: ",Ein)
print("Eout: ",Eout)
运行结果
13
14
15
16
17
18
19
20
机器学习基石笔记:Homework #4 Regularization&Validation相关习题的更多相关文章
- 机器学习基石笔记:14 Regularization
一.正则化的假设集合 通过从高次多项式的H退回到低次多项式的H来降低模型复杂度, 以降低过拟合的可能性, 如何退回? 通过加约束条件: 如果加了严格的约束条件, 没有必要从H10退回到H2, 直接使用 ...
- 机器学习基石笔记:Homework #1 PLA&PA相关习题
原文地址:http://www.jianshu.com/p/5b4a64874650 问题描述 程序实现 # coding: utf-8 import numpy as np import matpl ...
- 机器学习基石笔记:Homework #2 decision stump相关习题
原文地址:http://www.jianshu.com/p/4bc01760ac20 问题描述 程序实现 17-18 # coding: utf-8 import numpy as np import ...
- 机器学习基石笔记:Homework #3 LinReg&LogReg相关习题
原文地址:http://www.jianshu.com/p/311141f2047d 问题描述 程序实现 13-15 # coding: utf-8 import numpy as np import ...
- 机器学习基石笔记:15 Validation
一.模型选择问题 如何选择? 视觉上 NO 不是所有资料都能可视化;人脑模型复杂度也得算上. 通过Ein NO 容易过拟合;泛化能力差. 通过Etest NO 能保证好的泛化,不过往往没法提前获得测试 ...
- 机器学习基石:Homework #0 SVD相关&常用矩阵求导公式
- 机器学习基石笔记:13 Hazard of Overfitting
泛化能力差和过拟合: 引起过拟合的原因: 1)过度VC维(模型复杂度高)------确定性噪声: 2)随机噪声: 3)有限的样本数量N. 具体实验来看模型复杂度Qf/确定性噪声.随机噪声sigma2. ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 7 Regularization 正则化
Lecture7 Regularization 正则化 7.1 过拟合问题 The Problem of Overfitting7.2 代价函数 Cost Function7.3 正则化线性回归 R ...
- 林轩田机器学习基石笔记1—The Learning Problem
机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Lear ...
随机推荐
- ROS的使用
1.输入roscore时出现错误:Unable to contact my own server at 修改: 在.bashrc文件中添加以下内容: export ROS_HOSTNAME=local ...
- 70、saleforce的Json输出
List<Merchandise__c> merchandise = [select Id,Name,Price__c,Quantity__c from Merchandise__c li ...
- vue 项目配置 element 出错
解决方法: 把main.js文件中的 import 'element-ui/lib/theme-default/index.css' 改为 import 'element-ui/lib/theme-c ...
- 弹出框中的AJAX分页
$(function() { $("body").on("click",".set-topic",function(){ /*获取所有题目接 ...
- python作业/练习/实战:生成双色球小程序
作业要求: 每注投注号码由6个红色球号码和1个蓝色球号码组成.红色球号码从1--33中选择:蓝色球号码从1--16中选择 代码范例 import random all_red_ball = [str( ...
- XStream教程
XStream是一个简单的基于Java库,Java对象序列化到XML,反之亦然(即:可以轻易的将Java对象和xml文档相互转换). 特点 使用方便 - XStream的API提供了一个高层次外观,以 ...
- Win7下VS2008安装cocos2d-2.0-x-2.0.4模板时, 运行InstallWizardForVS2008.js文件执行失败的解决办法
今天在Win7环境下的VS2008中安装cocos2d-x模板的过程中,当点击InstallWizardForVS2008.js时,弹出" 没有文件扩展'.js'的脚本引擎&q ...
- Spring JAR下载地址
包含3.2版本及以上 http://repo.spring.io/libs-release-local/org/springframework/spring/ 包含从2.0开始的所有版本 http:/ ...
- 在规定的时间内出现动画.html
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- sql语句(删除重复数据只保留一条)
用SQL语句,删除掉重复项只保留一条 在几千条记录里,存在着些相同的记录,如何能用SQL语句,删除掉重复的呢 1.查找表中多余的重复记录,重复记录是根据单个字段(peopleId)来判断 select ...