LCA的RMQ求法
仔细想一想:最近的公共祖先,其实,搜索时回朔,连通这两点,那深度最低肯定是最近的公共祖先啊。
那这样就可以变成RMQ问题了。
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int max_=;
int ip,tot;
struct Tree{//树
int to;
int next;
int v;
};
struct Tree a[max_*];
int first[max_];//第一次出现的位置
int edge[max_];//边记录next
int de[max_*];//深度
int id[max_*];//遍历编号(包含回朔)
int dis[max_];//到根的距离。
int dp[max_*][];//st表,记录的是下标
bool vis[max_];//标记数组
void add_edge(int x,int y,int v)//建树
{
a[++ip].to=y;
a[ip].v=v;
a[ip].next=edge[x];
edge[x]=ip;
}
void dfs(int x,int deep)//dfs遍历
{
if(vis[x]==)
{
first[x]=tot;//记录第一次
vis[x]=;
}
de[tot]=deep,id[tot++]=x;
for(int i=edge[x];i;i=a[i].next)
{
int go_to=a[i].to;
if(vis[go_to])
continue;
int go_v=a[i].v;
dis[go_to]=dis[x]+go_v;//跟新距离
dfs(go_to,deep+);
id[tot]=x,de[tot++]=deep;
}
}
int Min(int x,int y)//寻找最小深度
{
if(de[x]>de[y])
return y;
else
return x;
}
void RMQ_ST(int len)
{
for(int i=;i<len;i++)//初始化
dp[i][]=i;
for(int j=;(<<j)<=len;j++)
for(int i=;i+(<<j)-<len;i++)
{
dp[i][j]=Min(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
int RMQ_question(int l,int r)
{
int k=;
while((<<(k+))<=r-l+)k++;
return Min(dp[l][k],dp[r-(<<k)+][k]);
}
void itin()
{
memset(vis,,sizeof(vis));
memset(dis,,sizeof(dis));
memset(edge,,sizeof(edge));
tot=;
ip=;
}
int main()
{
int T;
cin>>T;
while(T--)
{
itin();
int n,m;
cin>>n>>m;
for(int i=;i<n-;i++)
{
int x,y,v;
cin>>x>>y>>v;
add_edge(x,y,v);
add_edge(y,x,v);
}
dfs(,);
RMQ_ST(tot);
for(int i=;i<m;i++)
{
int u,v,k;
cin>>u>>v;
if(first[u]>first[v])//先出现的为左
{
k=RMQ_question(first[v],first[u]);
}
else
k=RMQ_question(first[u],first[v]);
int temp=dis[u]+dis[v]-(*dis[id[k]]);
cout<<temp<<endl;
}
}
return ;
}
LCA的RMQ求法的更多相关文章
- LCA和RMQ
下面写提供几个学习LCA和RMQ的博客,都很通熟易懂 http://dongxicheng.org/structure/lca-rmq/ 这个应该是讲得最好的,且博主还有很多其他文章,可以读读,感觉认 ...
- ZOJ 3195 Design the city LCA转RMQ
题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...
- [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...
- lca转RMQ
这个博客写得好 #include <stdio.h> #include <vector> #include <string.h> using namespace s ...
- HDU 3078 LCA转RMQ
题意: n个点 m个询问 下面n个数字表示点权值 n-1行给定一棵树 m个询问 k u v k为0时把u点权值改为v 或者问 u-v的路径上 第k大的数 思路: LCA转RMQ求出 LCA(u,v) ...
- [模板]LCA的倍增求法解析
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 【51NOD1766】树上的最远点对(线段树,LCA,RMQ)
题意:n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间, 表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c< ...
- LCA与RMQ
一.什么是LCA? LCA:Least Common Ancestors(最近公共祖先),对于一棵有根树T的任意两个节点u,v,求出LCA(T, u, v),即离跟最远的节点x,使得x同时是u和v的祖 ...
- POJ 1986(LCA and RMQ)
题意:给定一棵树,求任意两点之间的距离. 思路:由于树的特殊性,所以任意两点之间的路径是唯一的.u到v的距离等于dis(u) + dis(v) - 2 * dis(lca(u, v)); 其中dis( ...
随机推荐
- Python Numpy 矩阵级基本操作(2)
1.开方与求e指数 import numpy as np from numpy.matlib import randn print "Test sqrt and exp" arr ...
- Python集成开发环境Pycharm+Git+Gitee(码云)
********************************************************************* 本文主要介绍集成开发环境的配置过程,方便多人协作办公.代码版 ...
- mysql中BLACKHOOL的作用
MySQL在5.x系列提供了Blackhole引擎–"黑洞". 其作用正如其名字一样:任何写入到此引擎的数据均会被丢弃掉, 不做实际存储:Select语句的内容永远是空. 和Lin ...
- python面试题之阅读下面的代码,它的输出结果是什么?
class A(object): def go(self): print "go A go!" def stop(self): print "stop A stop!&q ...
- python面试题之docstring是什么?
Docstring是一种文档字符串,用于解释构造的作用.我们在函数.类或方法中将它放在首位来描述其作用.我们用三个单引号或双引号来声明docstring. >>> def sayhi ...
- Vue-cli中的静态资源管理(src/assets和static/的区别)
资源打包 为了回答这个问题,我们需要了解webpack是如何处理静态资源的.在所有的*.vue文件中你所有的templates 和CSS 都被vue-html-loader 和css-loader 查 ...
- adb基本操作
用途 命令 备注 安装app adb install xxx.apk -l 锁定该应用程序-r 替换已存在的应用程序,也就是说强制安装-t 允许测试包-s 把应用程序安装到sd卡上-d 允许进行降级安 ...
- python--知识小结和集合
知识小结 一. = 表示赋值 ==表示比较值的大小 is 比较内存地址 二. 数字小数据池:在-5~256之内,id在电脑里是一样的 字符串id一样要求: ①:不能有特殊字符 ②:s(一个单字符)*2 ...
- Activity 切换动画和页面切换动画
public class MainActivity extends Activity { private ViewFlipper viewFlipper; private float startX; ...
- 2018-8-10-WPF-播放-gif
title author date CreateTime categories WPF 播放 gif lindexi 2018-08-10 19:16:53 +0800 2018-2-13 17:23 ...