Description

你有一个 \(N\) 行、\(M\) 列的、每个格子都填写着 0 的表格。你进行了下面的操作:

  • 对于每一行 \(i\) ,选定自然数 \(r_i\ (0 ≤ r i ≤ M )\)

    ,将这一行最左边的 \(r_i\) 个格子中

    的数 \(+1\).

  • 对于每一列 \(i\) ,选定自然数 \(c_i\ (0 ≤ c i ≤ N )\)

    ,将这一列最上边的 \(c_i\) 个格子中

    的数 \(+1\).

这样,根据你选定的 \(r_1 , r_2 , . . . , r_N , c_1 , c_2 , . . . , c_M\) ,你就得到了一个每个格子要 么是 \(0\) ,要么是 \(1\) ,要么是 \(2\) 的一个最终的表格。

问本质不同的最终表格有多少种。 两个表格本质不同当且进当它们有一个对应格子中的数不同。

\(n, m\le 5\times 10^5\)

Solution

csy的题解:

组合数那里上下写反了,乘上 \(k!\) 是为了让选出来的k行k列一一匹配上,可以固定一个,另一个排列,就是 \(k!\).

Code

#include <iostream>
#include <cstdio> #define LL long long using namespace std; const int maxN = (int) 5e5;
const int mod = (int) 998244353; LL qpow(LL a, LL b)
{
LL ans = 1;
while (b)
{
if (b & 1) ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
} int n, m, ans;
int fac[maxN + 2], ifac[maxN + 2]; void init(int n)
{
fac[0] = 1;
for (int i = 1; i <= n; ++i) fac[i] = 1ll * fac[i - 1] * i % mod;
ifac[n] = qpow(fac[n], mod - 2);
for (int i = n - 1; i >= 0; --i) ifac[i] = 1ll * ifac[i + 1] * (i + 1) % mod;
} int C(int n, int m)
{
if (n < 0 || m < 0 || m > n) return 0;
return 1ll * fac[n] * ifac[m] % mod * ifac[n - m] % mod;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("AGC035F.in", "r", stdin);
freopen("AGC035F.out", "w", stdout);
#endif scanf("%d%d", &n, &m);
if (n < m) swap(n, m);
init(n);
for (int k = 0; k <= m; ++k)
{
ans += 1ll * qpow(-1, k) * C(n, k) % mod * C(m, k) % mod * fac[k] % mod * qpow(m + 1, n - k) % mod * qpow(n + 1, m - k) % mod;
ans %= mod;
(ans += mod) %= mod;
}
printf("%d\n", (1ll * ans + mod) % mod);
}

[AGC035F]Two Histograms的更多相关文章

  1. @atcoder - AGC035F@ Two Histograms

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 N*M 的方格,我们通过以下步骤往里面填数: (1)将 ...

  2. ZROI 暑期高端峰会 A班 Day1 组合计数

    AGC036F Square Constriants 一定有 \(l_i<p_i\le r_i\). 考虑朴素容斥,枚举每个数是 \(\le l_i\) 还是 \(\le r_i\).对于 \( ...

  3. 【AGC035F】Two Histograms

    Problem Description 你有一个 \(N\) 行.\(M\) 列的.每个格子都填写着 0 的表格.你进行了下面的操作: 对于每一行 \(i\) ,选定自然数 \(r_i\) (\(0\ ...

  4. Face recognition using Histograms of Oriented Gradients

    Face recognition using Histograms of Oriented Gradients 这篇论文的主要内容是将Hog算子应用到人脸识别上. 转载请注明:http://blog. ...

  5. 行人检測之HOG特征(Histograms of Oriented Gradients)

    之前的文章行人计数.计次提到HOG特征这个概念,这两天看了一下原版的论文,了解了一下HOG特征的原理,并依据自己的理解将这种方法的流程写了下来,假设有不正确的地方欢迎指正. HOG(Histogram ...

  6. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  7. (转)梯度方向直方图HOG(Histograms of Oriented Gradients )

    HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视 ...

  8. [翻译]——MySQL 8.0 Histograms

    前言: 本文是对这篇博客MySQL 8.0 Histograms的翻译,翻译如有不当的地方,敬请谅解,请尊重原创和翻译劳动成果,转载的时候请注明出处.谢谢! 英文原文地址:https://lefred ...

  9. Histograms of Sparse Codes for Object Detection用于目标检测的稀疏码直方图

    AbstractObject detection has seen huge progress in recent years, much thanks to the heavily-engineer ...

随机推荐

  1. 关于数据库抛出异常:Incorrect string value: '\xE1\x...' for column '字段名' at row 1 问题的解决方法

    打开sql,进行语句编辑 ENGINE=InnoDB DEFAULT CHARSET=utf8;字符集设置utf-8编码

  2. iterm2 多频操作

    新开多个table窗口 右键 move session to split pane 选择窗口 command + 窗口号 灰色的窗口右键 toggle Broadcasting input

  3. Bloom Filter的算法

     Bloom Filter的算法: 为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个.创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数.第i个哈希函 ...

  4. Python---进阶---常用模块os、jso

    一.写一个6位随机验证码程序(使用 random模块),要求验证码中至少包含一个数字.一个小写字母.一个大写字母 import randomimport string #help(string) co ...

  5. note 2019.12.16

    1.无序 HTML 列表: <ul> <li>Coffee</li> <li>Tea</li> <li>Milk</li& ...

  6. 阿里云产品家族再添新丁:视觉AI、CPFS一体机助力企业全面上云

    近日举行的2019阿里云广东峰会上,阿里云宣布推出面向混合云场景的CPFS一体机和视觉AI一体机,两款新品具备超高性能.开箱即用等特性,极大降低企业上云的周期和门槛. 加上此前推出的POLARDB数据 ...

  7. HTML5解决大文件断点续传

    一.概述 所谓断点续传,其实只是指下载,也就是要从文件已经下载的地方开始继续下载.在以前版本的HTTP协议是不支持断点的,HTTP/1.1开始就支持了.一般断点下载时才用到Range和Content- ...

  8. 【BZOJ4337】树的同构(树同构,哈希)

    题意: 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1T ...

  9. 【LOJ6225&网络流24题】火星探险问题(费用流)

    题意: 思路: [问题分析] 最大费用最大流问题. [建模方法] 把网格中每个位置拆分成网络中两个节点<i.a>,<i.b>,建立附加源S汇T. 1.对于每个顶点i,j为i东边 ...

  10. No plugin found for prefix 'war' in the current project and in the plugin groups

    解决办法: 在pom里面添加 : <dependency> <groupId>org.apache.maven.plugins</groupId> <arti ...