最近在学图论相关的内容,阅读这篇博客的前提是你已经基本了解了Tarjan求点双。

由割点的定义(删去这个点就可使这个图不连通)我们可以知道,坍塌的挖煤点只有在割点上才会使这个图不连通,而除了割点的其他点上则无可厚非,所以我们只需要考虑这个图的割点的情况。

那么我们就可以求出所有的点双连通分量, 如果这个点双仅有一个割点,那么这个割点坍塌后这个点双就被“孤立”了,所以需要在这个点双里设置一个救援出口。

那么这个点双如果包含多个割点呢?假设它的其中一个割点坍塌了,它还可以从另外几个割点出去。

所以我们只需要判断有几个点双只有一个割点,便是我们要设置的救援出口的数量。

有的同学可能要问了,如果所有点双都有多个割点呢?这种情况是不存在的,因为如果这样所有点双都变得联通了,也就不存在点双了。

关于方案的总数,只需要运用乘法原理。需要注意的是如果整个图就是一个点双,那么救援出口应该是两个,方案数是节点数\(n\),\(n*(n-1)/2\)。

代码

#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
#include <cstdio>
using namespace std; #define N 510
#define LL long long LL vis[N],ans1,ans2=1,bcc[N],n,m,num,cntd,DFN[N],IsCut[N],low[N],belong[N];
vector <LL> G[N];
vector <LL> vecd[N]; struct edge {
int u,v;
edge() {};
edge(int U,int V) {u=U;v=V;}
}; stack <edge> st; LL read() {
LL f=1,s=0;char a=getchar();
while(!(a>='0'&&a<='9')) { if(a=='-') f=-1 ; a=getchar(); }
while(a>='0'&&a<='9') { s=s*10+a-'0'; a=getchar();}
return f*s;
} void init() {
memset(bcc,0,sizeof(bcc));
memset(DFN,0,sizeof(DFN));
memset(vis,0,sizeof(vis));
memset(IsCut,0,sizeof(IsCut));
memset(belong,0,sizeof(belong));
memset(low,0,sizeof(low));
for(int i=1;i<=N;i++) G[i].clear(),vecd[i].clear();
for(LL i=1,u,v;i<=m;i++) {
u=read();v=read();
vis[u]=vis[v]=1;
G[u].push_back(v);
G[v].push_back(u);
}
ans1=cntd=0;
ans2=1;
} void Tarjan(LL u,LL fa) {
LL child=0;
DFN[u]=low[u]=++num;
for(LL i=0;i<G[u].size();i++) {
LL v=G[u][i];
if(!DFN[v]) {
child++;
st.push( edge(u,v) );
Tarjan(v,u);
if(low[v]>=DFN[u]) {
IsCut[u]=1;
cntd++;
for(;;) {
edge x=st.top();st.pop();
if(belong[x.u] != cntd) {vecd[cntd].push_back(x.u); belong[x.u] = cntd;}
if(belong[x.v] != cntd) {vecd[cntd].push_back(x.v); belong[x.v] = cntd;}
if(x.u == u && x.v == v) break;
}
}
low[u]=min(low[u],low[v]);
}
else if(DFN[u]>DFN[v] && v!=fa)
low[u]=min(low[u],DFN[v]);
}
if(fa<0 && child==1)
IsCut[u]=0;
} int main() {
int flag=0;
while(cin>>m && m) {
init();
flag++;
for(int i=1;vis[i];i++)
if(!DFN[i])
Tarjan(i,-1);
for(LL i=1;i<=cntd;i++) {
for(int j=0;j<vecd[i].size();j++)
if(IsCut[vecd[i][j]]) bcc[i]++;//bcc统计第i个点双的割点数量
if(bcc[i]==1){ //仅有一个割点,统计答案
ans1++;
ans2*=(vecd[i].size()-1);//乘法原理
}
}
LL siz=vecd[1].size();
if(!ans1) cout<<"Case "<<flag<<": "<<"2"<<' '<<siz*(siz-1)/2<<endl;//特判原图是不是点双
else cout<<"Case "<<flag<<": "<<ans1<<' '<<ans2<<endl;
}
}

C++[Tarjan求点双连通分量,割点][HNOI2012]矿场搭建的更多相关文章

  1. hdu 2460(tarjan求边双连通分量+LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边 ...

  2. [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分)

    [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得 ...

  3. Tarjan求点双连通分量

    概述 在一个无向图中,若任意两点间至少存在两条“点不重复”的路径,则说这个图是点双连通的(简称双连通,biconnected) 在一个无向图中,点双连通的极大子图称为点双连通分量(简称双连通分量,Bi ...

  4. BZOJ2730或洛谷3225 [HNOI2012]矿场搭建

    BZOJ原题链接 洛谷原题链接 显然在一个点双连通分量里,无论是哪一个挖煤点倒塌,其余挖煤点就可以互相到达,而对于一个点双连通分量来说,与外界的联系全看割点,所以我们先用\(tarjan\)求出点双连 ...

  5. Tarjan 点双+割点+DFS【洛谷P3225】 [HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  6. 【BZOJ】2730: [HNOI2012]矿场搭建【Tarjan找割点】【分联通块割点个数】

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3230  Solved: 1540[Submit][Stat ...

  7. [BZOJ2730][HNOI2012]矿场搭建 点双 割点

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2852  Solved: 1344[Submit][Stat ...

  8. BZOJ 2730: [HNOI2012]矿场搭建( tarjan )

    先tarjan求出割点.. 割点把图分成了几个双连通分量..只需dfs找出即可. 然后一个bcc有>2个割点, 那么这个bcc就不用建了, 因为一定可以走到其他救援出口. 只有一个割点的bcc就 ...

  9. 【BZOJ2730】[HNOI2012]矿场搭建 Tarjan

    [BZOJ2730][HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处. ...

随机推荐

  1. Spring基础09——Bean的自动装配

    1.XML配置的Bean自动装配 SpringIOC容器可以自动装配Bean,需要做的仅仅是在<bean>的autowire属性里指定自动装配的模式,而不需要手工去指定要装配的Bean,a ...

  2. MapReduce单机提交(待稿)

    MR 提交方式源码 提交方式: 1,开发-> jar -> 上传到集群中的某一个节点 -> hadoop jar ooxx.jar ooxx in out 2,嵌入[linux,wi ...

  3. ubuntu下安装python3.6.5导入ssl模块失败

    1.问题 python安装完毕后,提示找不到ssl模块: [root@localhost ~]# python3 Python ( , ::) [GCC (Red Hat -)] on linux2 ...

  4. linux shell 命令笔记

    标准输入.标准输出.标准错误 File descriptors are integers associated with an opened file or data stream. File des ...

  5. python 删除/app/*/logs/*/*.logs指定多少天的文件

    # encoding: utf-8 import sys import getopt import os import glob import time import datetime def rem ...

  6. VS2015开发常用快捷键

    以下内容均Ctrl+后面的按钮 M-O\P折叠 K-F 格式化 K-U\C注释 K-S侧外代码-(区域代码) 代码片段 ctor 自动生成默认的构造函数 prop 自动生成get set方法 cw 自 ...

  7. 【usaco 2013 open yinyang】阴阳

    题目 Farmer John 正在在计划自己的农场漫步.他的农场的结构就像一棵树:农场有N个谷仓(1<= N <=100,000),分别由N-1条路链接.这样,他便可以通过这些谷仓间的道路 ...

  8. npm cache clean --force

    当出现这个问题时npm ERR! Unexpected end of JSON input while parsing near '...,"dist":{"shasum ...

  9. CSS3画五角星和六角星

    最终想要实现的效果 一.五角星 在画五角星之前首先分析这个五角星是如何实现,由哪几个部分构成的,示意图如下: 三个顶角向上的三角形,通过设置旋转和定位相互重叠和拼接实现最终的五角星效果. 为了语义化和 ...

  10. PHP培训教程 PHP的运算符

    PHP中有丰富的运算符集,它们中大部分直接来自于C语言.按照不同功能区分,兄弟连PHP培训 运算符可以分为:算术运算符.字符串运算符.赋值运算符.位运算符.条件运算符,以及逻辑运算符等.当各种运算符在 ...