What does it mean?

The reason they are conservative or non-conservative has to do with the splitting of the derivatives. Consider the conservative derivative:

\[ \frac{\partial \rho u}{\partial x} \]

When we discretize this, using a simple numerical derivative just to highlight the point, we get:

\[ \frac{\partial \rho u}{\partial x} \approx \frac{(\rho u)_i - (\rho u)_{i-1}}{\Delta x} \]

Now, in non-conservative form, the derivative is split apart as:

\[ \rho \frac{\partial u}{\partial x} + u \frac{\partial \rho}{\partial x} \]

Using the same numerical approximation, we get:

\[ \rho \frac{\partial u}{\partial x} + u \frac{\partial \rho}{\partial x} = \rho_i \frac{u_i - u_{i-1}}{\Delta x} + u_i \frac{\rho_i - \rho_{i-1}}{\Delta x} \]

So now you can see (hopefully!) there are some issues. While the original derivative is mathematically the same, the discrete form is not the same. Of particular difficulty is the choice of the terms multiplying the derivative. Here I took it at point \(i\), but is \(i-1\) better? Maybe at \(i-1/2\)? But then how do we get it at \(i-1/2\)? Simple average? Higher order reconstructions?

Those arguments just show that the non-conservative form is different, and in some ways harder, but why is it called non-conservative? For a derivative to be conservative, it must form a telescoping series. In other words, when you add up the terms over a grid, only the boundary terms should remain and the artificial interior points should cancel out.

So let's look at both forms to see how those do. Let's assume a 4 point grid, ranging from \(i=0\) to \(i=3\). The conservative form expands as:

\[ \frac{(\rho u)_1 - (\rho u)_0}{\Delta x} + \frac{(\rho u)_2 - (\rho u)_1}{\Delta x} + \frac{(\rho u)_3 - (\rho u)_2}{\Delta x} \]

You can see that when you add it all up, you end up with only the boundary terms (\(i = 0\) and \(i = 3\)). The interior points, \(i = 1\) and \(i = 2\) have canceled out.

Now let's look at the non-conservative form:

\[ \rho_1 \frac{u_1 - u_0}{\Delta x} + u_1 \frac{\rho_1 - \rho_0}{\Delta x} + \rho_2 \frac{u_2 - u_1}{\Delta x} + u_2 \frac{\rho_2 - \rho_1}{\Delta x} + \rho_3 \frac{u_3 - u_2}{\Delta x} + u_3 \frac{\rho_3 - \rho_2}{\Delta x} \]

So now, you end up with no terms canceling! Every time you add a new grid point, you are adding in a new term and the number of terms in the sum grows. In other words, what comes in does not balance what goes out, so it's non-conservative.

You can repeat the analysis by playing with altering the coordinate of those terms outside the derivative, for example by trying \(i-1/2\) where that is just the average of the value at \(i\) and \(i-1\).

How to choose which to use?

Now, more to the point, when do you want to use each scheme? If your solution is expected to be smooth, then non-conservative may work. For fluids, this is shock-free flows.

If you have shocks, or chemical reactions, or any other sharp interfaces, then you want to use the conservative form.

There are other considerations. Many real world, engineering situations actually like non-conservative schemes when solving problems with shocks. The classic example is the Murman-Cole scheme for the transonic potential equations. It contains a switch between a central and upwind scheme, but it turns out to be non-conservative.

At the time it was introduced, it got incredibly accurate results. Results that were comparable to the full Navier-Stokes results, despite using the potential equations which contain no viscosity. They discovered their error and published a new paper, but the results were much "worse" relative to the original scheme. It turns out the non-conservation introduced an artificial viscosity, making the equations behave more like the Navier-Stokes equations at a tiny fraction of the cost.

Needless to say, engineers loved this. "Better" results for significantly less cost!

Conservation Vs Non-conservation Forms of conservation Equations的更多相关文章

  1. UVALive 6264 Conservation --拓扑排序

    题意:一个展览有n个步骤,告诉你每一步在那个场馆举行,总共2个场馆,跨越场馆需要1单位时间,先给你一些约束关系,比如步骤a要在b前执行,问最少的转移时间是多少. 解法:根据这些约束关系可以建立有向边, ...

  2. Central Europe Regional Contest 2012 Problem J: Conservation

    题目不难,感觉像是一个拓扑排序,要用双端队列来维护: 要注意细节,不然WA到死  = =! #include<cstdio> #include<cstring> #includ ...

  3. 【medium】990. Satisfiability of Equality Equations 并查集

    Given an array equations of strings that represent relationships between variables, each string equa ...

  4. [Swift]LeetCode990. 等式方程的可满足性 | Satisfiability of Equality Equations

    Given an array equations of strings that represent relationships between variables, each string equa ...

  5. LeetCode 990. Satisfiability of Equality Equations

    原题链接在这里:https://leetcode.com/problems/satisfiability-of-equality-equations/ 题目: Given an array equat ...

  6. LC 990. Satisfiability of Equality Equations

    Given an array equations of strings that represent relationships between variables, each string equa ...

  7. 【leetcode】990. Satisfiability of Equality Equations

    题目如下: Given an array equations of strings that represent relationships between variables, each strin ...

  8. 【LeetCode】990. Satisfiability of Equality Equations 解题报告(C++ & python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 并查集 日期 题目地址:https://le ...

  9. Wizard Framework:一个自己开发的基于Windows Forms的向导开发框架

    最近因项目需要,我自己设计开发了一个基于Windows Forms的向导开发框架,目前我已经将其开源,并发布了一个NuGet安装包.比较囧的一件事是,当我发布了NuGet安装包以后,发现原来已经有一个 ...

随机推荐

  1. Azure Monitor Kibana configuration always seems to send over SSL

    https://github.com/elastic/logstash/issues/10125 https://blogs.cisco.com/security/step-by-step-setup ...

  2. MySQL高可用方案 MHA之四 keepalived 半同步复制

    主从架构(开启5.7的增强半同步模式)master: 10.150.20.90   ed3jrdba90slave: 10.150.20.97    ed3jrdba97 10.150.20.132 ...

  3. 背包&数位dp(8.7)

    背包 0/1背包 设dp[i][j]为前i个物品选了j体积的物品的最大价值/方案数 dp[i][j]=max(dp[i-1][j-w[i]]+v[i],dp[i-1][j])(最大价值) dp[i][ ...

  4. Non-local Neural Networks

    1. 摘要 卷积和循环神经网络中的操作都是一次处理一个局部邻域,在这篇文章中,作者提出了一个非局部的操作来作为捕获远程依赖的通用模块. 受计算机视觉中经典的非局部均值方法启发,我们的非局部操作计算某一 ...

  5. chales抓包,模拟异常情况

    抓包能做什么? 1 .可以抓取客户端和server的请求和返回,可以借助判断是客户端问题是server问题 2.可以模拟各种异常情况用来测试异常情况 3.无接口文档情况下测试接口 怎么修改你抓到的请求 ...

  6. 阶段1 语言基础+高级_1-3-Java语言高级_08-JDK8新特性_第3节 两种获取Stream流的方式_11_练习:集合元素处理(Stream方式)

  7. 毒瘤阅读题 LightOJ - 1220

    Mysterious Bacteria LightOJ - 1220 https://vjudge.net/problem/LightOJ-1220 "Each case starts wi ...

  8. Vue ----》 如何实现 sessionStorage 的监听,实现数据响应式

    在开发过程中,组件中的随时可能改变的数据有的是缓存到sessionStorage里面的,但是有些组件取seesionStorage中的值时,并不能取到更新后的值. 接下来就说一下,当seesionSt ...

  9. node.js—创建、删除、追加文件等方法汇总

    使用Node.js的fs模块必须在electron项目里 /* 1. fs.stat 检测是文件还是目录(目录 文件是否存在) 2. fs.mkdir 创建目录 (创建之前先判断是否存在) 3. fs ...

  10. pip源地址

    pip国内的一些镜像   阿里云 http://mirrors.aliyun.com/pypi/simple/   中国科技大学 https://pypi.mirrors.ustc.edu.cn/si ...