Problem Description
Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make changes with these coins for a given amount of money.

For example, if we have 11 cents, then we can make
changes with one 10-cent coin and one 1-cent coin, or two 5-cent coins and one
1-cent coin, or one 5-cent coin and six 1-cent coins, or eleven 1-cent coins. So
there are four ways of making changes for 11 cents with the above coins. Note
that we count that there is one way of making change for zero cent.

Write
a program to find the total number of different ways of making changes for any
amount of money in cents. Your program should be able to handle up to 100
coins.

 
Input
The input file contains any number of lines, each one
consisting of a number ( ≤250 ) for the amount of money in cents.
 
Output
For each input line, output a line containing the
number of different ways of making changes with the above 5 types of
coins.
 
Sample Input
11
26
 
现附上AC代码:

#include<iostream>
using namespace std;
const int money=251;
const int coin=101;
int dp[money][coin]={0}; //dp[i][j]表示金额为i,硬币数为j的种类方法
int value[5]={1,5,10,25,50};

void solve()
{
//for(int i=0;i<money;i++) 这里为什么只能dp[0][0]=0,是因为dp[j][1]=dp[j][1]+dp[j-value[i]][k-1],只有j-value[i]==0时,才能在加1
//dp[i][0]=1;
dp[0][0]=1;
for(int i=0;i<5;i++)
{
for(int j=value[i];j<money;j++)
{
for(int k=1;k<coin;k++)
{
dp[j][k]=dp[j][k]+dp[j-value[i]][k-1];
}
}
}
}
int main()
{
solve();
int ans[money]={0};
ans[0]=1; //注意这一步,一定不能忘,一个特殊值
for(int i=1;i<money;i++)
{
for(int j=1;j<coin;j++)
{
ans[i]=dp[i][j]+ans[i];
}
}
int s;
while(cin>>s)
cout<<ans[s]<<endl;
return 0;
}

因为刚开始学习动态规划,这种硬币问题算是入门的问题。到现在为止,我所理解的动态规划是利用递推关系式,对于某个解值是需要用之前的算出来的进行求解,也就是类似于我要想知道第三个值的数,就需要让第一个数乘以第二个数,举个例子,就像我们都熟知的斐波那契数列,但要注意初始值一定要弄明白,否则递推关系式将进行不下去。另外斐波那契数列是最简单的dp,稍微复杂一点的需要进行不止一次地递推,就像这次的硬币问题,需要递推5次。

所有硬币组合问题——动态规划hdu2069的更多相关文章

  1. CJOJ 1071 【Uva】硬币问题(动态规划)

    CJOJ 1071 [Uva]硬币问题(动态规划) Description 有n种硬币,面值分别为v1, v2, ..., vn,每种都有无限多.给定非负整数S,可以选用多少个硬币,使得面值之和恰好为 ...

  2. 【BZOJ1042】硬币购物(动态规划,容斥原理)

    [BZOJ1042]硬币购物(动态规划,容斥原理) 题面 BZOJ Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬 ...

  3. 腾讯笔试题:小Q硬币组合

    腾讯有一道机试题: 大概意思是: 小Q非常富有,拥有非常多的硬币,小Q的拥有的硬币是有规律的,对于所有的非负整数K,小Q恰好> 各有两个数值为2^k,的硬币,所以小Q拥有的硬币是1,1,2,2, ...

  4. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  5. 记录结果再利用的"动态规划"之背包问题

    参考<挑战程序设计竞赛>p51 https://www.cnblogs.com/Ymir-TaoMee/p/9419377.html 01背包问题 问题描述:有n个重量和价值分别为wi.v ...

  6. [Leetcode][动态规划] 零钱兑换

    一.题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: ...

  7. [LeetCode] 518. Coin Change 2 硬币找零 2

    You are given coins of different denominations and a total amount of money. Write a function to comp ...

  8. Leetcode题目322.零钱兑换(动态规划-中等)

    题目描述: 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: c ...

  9. eetcode必要技巧--动态规划(一)

    首先我们要搞清楚什么是动态规划 动态规划是运筹学中用于求解决策过程中的最优化数学方法.当然,我们在这里关注的是作为一种算法设计技术,作为一种使用多阶段决策过程最优的通用方法. 当然这个很难理解,但是按 ...

随机推荐

  1. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

  2. vue路由定义

    router  根据URL分配到对应的处理程序 单应用页面,vue开发中只有一个一面 例如我们在开发移动端的时候,正常情况下底部的tab有四个选项: 首页     home 发现     find 订 ...

  3. js中的函数声明置顶

    函数声明置顶是指 js引擎在读取变量与声明式函数时,会优先读取,例如如下 var a = 1: function a(){}; console.log(a); //这里得到的为1,而不是该functi ...

  4. 机器学习-K-means聚类及算法实现(基于R语言)

    K-means聚类 将n个观测点,按一定标准(数据点的相似度),划归到k个聚类(用户划分.产品类别划分等)中. 重要概念:质心 K-means聚类要求的变量是数值变量,方便计算距离. 算法实现 R语言 ...

  5. Python not and or

    刷题时候,有道题目的答案是 return(num and (num % 9 or 9)) 看的有点懵逼,看来解释如下: 1.首先,’and’.’or’.’not’的优先级是not>and> ...

  6. 【LeetCode】位运算 bit manipulation(共32题)

    [78]Subsets 给了一个 distinct 的数组,返回它所有的子集. Example: Input: nums = [,,] Output: [ [], [], [], [,,], [,], ...

  7. java.util.Date 与 java.sql.Date 相关知识点解析

    问:java.sql.Date 和 java.util.Date 有什么区别?   答:这两个类的区别是 java.sql.Date是针对 SQL 语句使用的,它只包含日期而没有时间部分,一般在读写数 ...

  8. JVM内存结构从永久代到元空间

    在文章<JVM之内存结构详解>中我们描述了Java7以前的JVM内存结构,但在Java8和以后版本中JVM的内存结构慢慢发生了变化.作为面试官如果你还不知道,那么面试过程中是不是有些露怯? ...

  9. python 的三元运算符

    一.三元运算符 三元运算符就是在赋值变量的时候,可以直接加判断,然后赋值 格式:[on_true] if [expression] else [on_false] res = 值1 if 条件 els ...

  10. c++11 指针空值

    1. 引入nullptr的必要性: 典型的指针初始化是将其指向一个空的位置.比如: int* my_ptr = 0; int* my_ptr = NULL; 一般情况下,NULL是一个宏定义. #un ...