题目如下:

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

大意:

求一个有向图在走一次反向边或不走的情况下走的节点数最多的回到起点的路径的节点数

思路:

首先边可以重复走 所以缩点不会影响答案

缩点后得到的是一个DAG 我们有走一次反向边的机会 此时就相当于在DAG上加一条边 由于要从起点回到起点 这加的一条边的两端要满足一端起点能够到达 一端能通往起点

说到这里算法已经显而易见了 故不赘述了

下面是代码:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>
#include <memory.h>
#define r(x) x=read()
#define MAXX 100005
#define MIN(a,b) (a<b?a:b)
#define MAX(a,b) (a>b?a:b)
using namespace std;
int h[MAXX],h2[MAXX],cnt,dis[][MAXX],flag[MAXX];
int dfn[MAXX],low[MAXX],id[MAXX],w[MAXX],k,top,sta[MAXX],num;
int n,m,ans,ans2,u,to,st;
struct edge{int to,nex;}e[MAXX],yuan[MAXX];
void add(int u,int to)
{
cnt++;
e[cnt]=(edge){to,h[u]},h[u]=cnt;
}
void tarjan(int now)
{
sta[++top]=now;
dfn[now]=low[now]=++k;
for(int i=h[now];i;i=e[i].nex)
{
if(!dfn[e[i].to])
tarjan(e[i].to),low[now]=MIN(low[now],low[e[i].to]);
else
if(!id[e[i].to])
low[now]=MIN(low[now],dfn[e[i].to]);
}
if(low[now]==dfn[now])
{
id[now]=++num;
while(sta[top]!=now){id[sta[top]]=num;top--;}
top--;
}
}
void spfa(int now,int x)
{
queue<int>que;
dis[x][now]=w[now];
que.push(now);
flag[now]=;
while(!que.empty())
{
int p=que.front();que.pop();
for(int i=h[p];i;i=e[i].nex)
{
if(i%!=x) continue;
if(dis[x][e[i].to]<dis[x][p]+w[e[i].to])
{
dis[x][e[i].to]=dis[x][p]+w[e[i].to];
if(!flag[e[i].to])
flag[e[i].to]=,que.push(e[i].to);
}
}
flag[p]=;
}
}
void dfs(int now)
{
for(int i=h[now];i;i=e[i].nex)
{
int to=e[i].to;
if(i%==)
{
if(dis[][now]&&dis[][to])
ans=MAX(ans,dis[][now]+dis[][to]);
}
else
dfs(to);
}
}
bool cmp(edge a,edge b)
{
return id[a.to]==id[b.to]?id[a.nex]<id[b.nex]:id[a.to]<id[b.to];
}
int read()
{
char ch=;int w=;
while(ch<''||ch>''){ch=getchar();}
while(ch>=''&&ch<=''){w=w*+ch-'';ch=getchar();}
return w;
}
int main()
{
r(n),r(m);
for(int i=;i<=m;++i)
r(u),r(to),add(u,to),yuan[i]=(edge){to,u};
for(int i=;i<=n;++i)
if(!dfn[i])
tarjan(i);
for(int i=;i<=n;++i)
w[id[i]]++;
st=id[];
sort(yuan+,yuan+m+,cmp);
memset(h,,sizeof(h));
cnt=;
for(int i=;i<=m;++i)
{
int x=id[yuan[i].nex],y=id[yuan[i].to];
if((x==id[yuan[i-].nex]&&y==id[yuan[i-].to])||(x==y))
continue;
add(x,y),add(y,x);
}
spfa(st,),spfa(st,);
ans=w[st];
dfs(st);
if(ans>w[st]) printf("%d",ans-w[st]);
else printf("%d",ans);
return ;
}

Tarjan水题系列(1):草鉴定Grass Cownoisseur [USACO15JAN]or[luogu P3119]的更多相关文章

  1. [USACO15JAN]草鉴定Grass Cownoisseur(分层图+tarjan)

    [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of his cows ...

  2. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  3. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  4. 【洛谷P3119】[USACO15JAN]草鉴定Grass Cownoisseur

    草鉴定Grass Cownoisseur 题目链接 约翰有n块草场,编号1到n,这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草. 贝西总是从1号草场出发,最后 ...

  5. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  6. Tarjan水题系列(5):最大半连通子图 [ZJOI2007 luogu P2272]

    题目 大意: 缩点后转为求最长链的长度和最长链的个数 思路: 看懂题就会做系列 长度和个数都可以拓扑排序后DP求得 毕竟是2007年的题 代码: 如下 #include <cstdio> ...

  7. [USACO15JAN]草鉴定Grass Cownoisseur (分层图,最长路,$Tarjan$)

    题目链接 Solution 水水的套路题. 可以考虑到一个环内的点是可以都到达的,所以 \(tajan\) 求出一个 \(DAG\) . 然后 \(DAG\) 上的点权值就是 \(scc\) 的大小. ...

  8. Tarjan水题系列(4):HAOI2010 软件安装

    题目: 现在我们的手头有N个软件,对于一个软件i,它要占用Wi​的磁盘空间,它的价值为Vi​.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi​的和最大). ...

  9. Tarjan水题系列(3):HNOI2006 潘多拉的魔盒

    题目: 链接 大意: 盒子与盒子之间的关系构成一个有向图 求图上包含节点数最多的路径的节点数 思路: 有向图上求包含节点数最多的路径的节点数 可直接使用tarjan缩点后拓扑dp求得 在此不赘述 此题 ...

随机推荐

  1. #333 Div2 Problem B Approximating a Constant Range (尺取 && RMQ || 尺取 && multiset)

    题目链接:http://codeforces.com/contest/602/problem/B 题意 :给出一个含有 n 个数的区间,要求找出一个最大的连续子区间使得这个子区间的最大值和最小值的差值 ...

  2. HDU 6578 Blank

    hdu题面 Time limit 1000 ms Memory limit 262144 kB OS Windows Source 2019 Multi-University Training Con ...

  3. 一个ros包依赖另一个ros包提供的库

    背景: 编写一个点云配准的ros包,记为A,在其中打算使用多种点云配准算法. 同一个ros工作空间下有另一个ros包,记为B,B中提供了几种点云配准算法,并将它们都编译成一个库文件并安装在工作空间中. ...

  4. 苹果cms v10官网下载

    苹果CMS程序是一套采用PHP+MYSQL环境下运行的完善而强大的快速建站系统.经过近多年的开发经验和技术积累,苹果CMS程序已逐步走向成熟,在易用性和功能上已经成为同行中的佼佼者.程序体积小-> ...

  5. Spring Data Jpa (二)JPA基础查询

    介绍Spring Data Common里面的公用基本方法 (1)Spring Data Common的Repository Repository位于Spring Data Common的lib里面, ...

  6. wannafly 练习赛10 f 序列查询(莫队,分块预处理,链表存已有次数)

    链接:https://www.nowcoder.net/acm/contest/58/F 时间限制:C/C++ 5秒,其他语言10秒 空间限制:C/C++ 262144K,其他语言524288K 64 ...

  7. 【Python】学习笔记十三:函数的参数对应

    位置传递 我们在定义函数时候已经对函数进行了参数传递调用,但是那只是粗浅的位置传递 示例 def sum(a,b,c): d = a+b+c return d print(sum(1,2,3)) 调用 ...

  8. Oracle与MySQL的概念区别

    MySQL MySQL是一个以用户为中心的概念,一个用户下,拥有多个数据库,一个数据库下拥有多个数据库表!然而Oracle与MySQL有很大的不同!! Oracle Oracle中,一个数据库拥有多个 ...

  9. ES6中对字符串处理的优点

    目录 1.字符的Unicode表示法 2.字符串的遍历接口 3.直接输入 U+2028 和 U+2029(分行符 和 分段符) 4.JSON.stringify() 的改造 1.字符的Unicode表 ...

  10. SQL Server database mail问题诊断一例

    产品环境sql server database的mail发不出邮件,影响客户的业务,在数据库中进行诊断 诊断sql: EXEC msdb.dbo.sp_send_dbmail @profile_nam ...