一、k-近邻算法(kNN)

  采用测量不同特征值之间的距离方法进行分类

工作原理:

  存在一个样本数据集合(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征醉相思数据(最近邻)的分类标签。
  一般来说,我们只选择样本数据集中前k个最相似的数据,(k的来源),通常k<=20的整数,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
  一般流程:收集-准备-分析数据-训练-测试-使用算法。

1.使用Python导入数据

 from numpy import *#科学计算包
import operator #运算符模块 def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
#距离计算
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2 #平方
sqDistances = sqDiffMat.sum(axis=1) #根号下平方相加
distances = sqDistances**0.5 #根号
sortedDistIndicies = distances.argsort() #排序
classCount={}
#选择距离最小的k个点
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#排序,将classCount字典分解为元祖列表,导入itemgeeter方法,按照第二个元素的次序对元祖进行排序
#此处排序为逆序,即从大到小排序,最后返回发生频率最高的元素标签。
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
# 为预测数据所在分类:kNN.classify0([0,0], group, labels, 3)
执行命令:
>>>import kNN
>>>group,labels = kNN.createDataSet()
>>>group
array([[1. , 1.1],
[1. , 1. ],
[0. , 0. ],
[0. , 0.1]])
>>>labels
['A', 'A', 'B', 'B']
>>>kNN.classify0([0,0], group, labels, 3)
'B'
出现的错误:
AttributeError: module 'KNN' has no attribute 'classify0'
原因:python2和python3不兼容
解决方法:将iteritems()改为items(),然后重启PyCharm
												

第二章--k-近邻算法(kNN)的更多相关文章

  1. 《机器学习实战》---第二章 k近邻算法 kNN

    下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @au ...

  2. k近邻算法(KNN)

    k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...

  3. 《机实战》第2章 K近邻算法实战(KNN)

    1.准备:使用Python导入数据 1.创建kNN.py文件,并在其中增加下面的代码: from numpy import * #导入科学计算包 import operator #运算符模块,k近邻算 ...

  4. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  5. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  6. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

  7. k近邻算法(knn)的c语言实现

    最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...

  8. 最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

    k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是 ...

  9. 第2章 K近邻算法

    numpy中的tile函数: 遇到numpy.tile(A,(b,c))函数,重复复制A,按照行方向b次,列方向c次. >>> import numpy >>> n ...

  10. 07.k近邻算法kNN

    1.将数据分为测试数据和预测数据 2.数据分为data和target,data是矩阵,target是向量 3.将每条data(向量)绘制在坐标系中,就得到了一系列的点 4.根据每条data的targe ...

随机推荐

  1. PHP-操作json

    输出 json 文件中文处理 <?php $json_array = array(); // 1.转换为json字符串(不自动转换为unicode编码) if (version_compare( ...

  2. mysql_DML_select_union

    使用union可以将多个select 语句的查询结果集组合成一个结果集.select 字段列表1 from table1union [all]select 字段列表2 from table2...说明 ...

  3. 什么时候需要用的Vue.nextTick()

    什么时候需要用的Vue.nextTick() 你在Vue生命周期的created()钩子函数进行的DOM操作一定要放在Vue.nextTick()的回调函数中.原因是什么呢,原因是在created() ...

  4. Decision Tree Algorithm

    Decision Tree算法的思路是,将原始问题不断递归地细分为子问题,直到子问题直接可获得答案为止.在模型训练的过程中,根据训练集去做树的生长(Grow the tree),生长所有可能的Bran ...

  5. jQuery DataTables 问题:Cannot reinitialise DataTable

    解决:  destroy: true, var tabel = $('#userlist').DataTable({        destroy: true,                    ...

  6. Test Case Design Method - OATS

    [转载] OATS:即Orthogonal Array Testing Strategy,正交表测试策略. 1      OATS的概念: 次数(Runs):简单的说,就是次数是多少,就有多少个用例. ...

  7. 阿里云ECS服务器centos6.x安装docker问题盘点

    1.首先在centos6.x和centos7.x中yum安装docker的区分. centos6.x: yum install docker-io centos7.x: yum install doc ...

  8. E-puck简单入门

    E-puck是瑞士的一款小型的机器人,可以用于教学和实验,其外形小巧,并且整个结构也比较简单,如果出现损坏也比较容易维护. 其外形如下: 因为国内的资料很少,资料主要还是通过官方文档了解,而官方的文档 ...

  9. Linux mysql 乱码

    http://www.pc6.com/infoview/Article_63586.html http://itindex.net/detail/41748-linux-mysql-5.5 http: ...

  10. shuoj 1 + 2 = 3? (二分+数位dp)

    题目传送门 1 + 2 = 3? 发布时间: 2018年4月15日 22:46   最后更新: 2018年4月15日 23:25   时间限制: 1000ms   内存限制: 128M 描述 埃森哲是 ...