题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4129

题解

考虑没有修改的序列上的版本应该怎么做:

弱化的题目应该是这样的:

给定一个序列,每次询问区间 \([l, r]\) 中元素的最小没有出现的自然数。


这个弱化的版本可以用离线+线段树二分水掉。但是这个做法显然不太好搬到树上做。

上面的弱化版还有一个莫队做法:可以用莫队维护出来每一个区间的每一个数的出现为次数。把出现过的数通过分块表示出来,于是查询的时候枚举每一个块,寻找第一个不满的块。


那么放到树上以后,就用树上莫队吧。

既然还有修改,那么就是树上带修莫队。


注意一下:

因为数据范围比较大,所以需要离散化。但是离散化的时候为了防止漏掉一些数(某两个数在数轴上是不相邻的,但是在离散化以后相邻),需要把出现过的每一个数 \(+1\) 放进被离散化的序列中。


UPD:

貌似不需要离散化,答案一定 \(< n\),所以只需要保留 \(<n\) 的数就可以了。

我真的有点智商低下。

一定要考虑题目中的一些量是否有用,是否可以简化。


时间复杂度 \(O(m\cdot n^{\frac 23})\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 5e4 + 7;
const int B = 200 + 7; #define bl(x) (((x) - 1) / blo + 1)
#define st(x) (((x) - 1) * blo + 1)
#define ed(x) std::min((x) * blo, dis) int n, m, dis, dfc, dfc2, m1, m2, blo, now;
int a[N], b[N << 2], ans[N];
int dep[N], f[N], siz[N], son[N], dfn[N], pre[N], top[N];
int ldfn[N], rdfn[N], seq[N << 1];
int used[N], s[N << 2], ss[B], cnt[N << 2]; struct Update { int id, x, k, pre; } u[N];
struct Query {
int id, l, r, lca, *ans;
inline bool operator < (const Query &b) const {
if (bl(l) != bl(b.l)) return l < b.l;
if (bl(r) != bl(b.r)) return r < b.r;
return id < b.id;
}
} q[N]; struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); } inline void dfs1(int x, int fa = 0) {
dep[x] = dep[fa] + 1, f[x] = fa, siz[x] = 1;
for fec(i, x, y) if (y != fa) dfs1(y, x), siz[x] += siz[y], siz[y] > siz[son[x]] && (son[x] = y);
}
inline void dfs2(int x, int pa) {
top[x] = pa, dfn[x] = ++dfc, pre[dfc] = x;
ldfn[x] = ++dfc2, seq[dfc2] = x;
if (!son[x]) return (void)(rdfn[x] = ++dfc2, seq[dfc2] = x); dfs2(son[x], pa);
for fec(i, x, y) if (y != f[x] && y != son[x]) dfs2(y, y);
rdfn[x] = ++dfc2, seq[dfc2] = x;
}
inline int lca(int x, int y) {
while (top[x] != top[y]) dep[top[x]] > dep[top[y]] ? x = f[top[x]] : y = f[top[y]];
return dep[x] < dep[y] ? x : y;
} inline void qadd(int x, int k) {
s[x] += k, ss[bl(x)] += k;
assert(s[x] == 0 || s[x] == 1);
assert(ss[bl(x)] <= ed(bl(x)) - st(bl(x)) + 1 && ss[bl(x)] >= 0);
}
inline int qans() {
for (int i = 1; i <= bl(dis); ++i) if (ss[i] != ed(i) - st(i) + 1)
for (int j = st(i); j <= ed(i); ++j) if (!s[j]) return b[j - 1] + 1;
return b[dis] + 1;
} inline void madd(int x) {
++cnt[x];
if (cnt[x] == 1) qadd(x, 1);
}
inline void mdel(int x) {
--cnt[x];
if (cnt[x] == 0) qadd(x, -1);
}
inline void mupd(int x) {
if (used[x]) mdel(a[x]);
else madd(a[x]);
used[x] ^= 1;
} inline void cadd(int i) {
int x = u[i].x, k = u[i].k;
if (used[x]) mdel(a[x]);
u[i].pre = a[x], a[x] = k;
if (used[x]) madd(a[x]);
}
inline void cdel(int i) {
int x = u[i].x;
if (used[x]) mdel(a[x]);
assert(a[x] == u[i].k);
a[x] = u[i].pre;
if (used[x]) madd(a[x]);
}
inline void cupd(int i) {
while (now < m1 && u[now + 1].id <= i) cadd(++now);
while (now && u[now].id > i) cdel(now--);
} inline void lsh() {
for (int i = 1; i <= dis; ++i) b[i + dis] = b[i] + 1;
dis *= 2;
std::sort(b + 1, b + dis + 1);
dis = std::unique(b + 1, b + dis + 1) - b - 1;
for (int i = 1; i <= n; ++i) a[i] = std::lower_bound(b + 1, b + dis + 1, a[i]) - b;
for (int i = 1; i <= m1; ++i) u[i].k = std::lower_bound(b + 1, b + dis + 1, u[i].k) - b;
b[0] = -1;
} inline void work() {
lsh();
blo = pow(n, 2.0 / 3);
std::sort(q + 1, q + m2 + 1);
int l = 1, r = 0;
for (int i = 1; i <= m2; ++i) {
cupd(q[i].id);
while (l > q[i].l) mupd(seq[--l]);
while (r < q[i].r) mupd(seq[++r]);
while (l < q[i].l) mupd(seq[l++]);
while (r > q[i].r) mupd(seq[r--]);
if (q[i].lca) assert(!used[q[i].lca]);
if (q[i].lca) mupd(q[i].lca);
*q[i].ans = qans();
if (q[i].lca) mupd(q[i].lca);
}
for (int i = 1; i <= m2; ++i) printf("%d\n", ans[i]);
} inline void init() {
read(n), read(m);
for (int i = 1; i <= n; ++i) read(a[i]), b[++dis] = a[i];
int x, y;
for (int i = 1; i < n; ++i) read(x), read(y), adde(x, y);
dfs1(1), dfs2(1, 1);
for (int i = 1; i <= m; ++i) {
int opt;
read(opt);
if (opt == 0) ++m1, read(u[m1].x), read(u[m1].k), u[m1].id = i, b[++dis] = u[m1].k;
else {
int x, y, p;
read(x), read(y);
if (ldfn[x] > ldfn[y]) std::swap(x, y);
p = lca(x, y), ++m2;
if (p == x) q[m2] = (Query){ i, ldfn[x], ldfn[y], 0, ans + m2 };
else q[m2] = (Query){ i, rdfn[x], ldfn[y], p, ans + m2 };
}
}
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4129 Haruna’s Breakfast 树上带修莫队+分块的更多相关文章

  1. BZOJ 4129 Haruna’s Breakfast ( 树上带修莫队 )

    题面 求树上某路径上最小的没出现过的权值,有单点修改 添加链接描述 分析 树上带修莫队板题,问题是怎么求最小的没出现过的权值. 因为只有nnn个点,所以没出现过的最小值一定在[0,n][0,n][0, ...

  2. [BZOJ4129]Haruna’s Breakfast(树上带修改莫队)

    BZOJ3585,BZOJ2120,BZOJ3757三合一. 对于树上路径问题,树链剖分难以处理的时候,就用树上带修改莫队. 这里的MEX问题,使用BZOJ3585的分块方法,平衡了时间复杂度. 剩下 ...

  3. 【BZOJ-3052】糖果公园 树上带修莫队算法

    3052: [wc2013]糖果公园 Time Limit: 200 Sec  Memory Limit: 512 MBSubmit: 883  Solved: 419[Submit][Status] ...

  4. BZOJ3052: [wc2013]糖果公园【树上带修莫队】

    Description Input Output Sample Input Sample Input Sample Output 84 131 27 84 HINT 思路 非常模板的树上带修莫队 真的 ...

  5. luogu4074 [WC2013]糖果公园(树上带修莫队)

    link 题目大意:给一个树,树上每个点都有一种颜色,每个颜色都有一个收益 每次修改一个点上的颜色 或询问一条链上所有颜色第i次遇到颜色j可以获得w[i]*v[j]的价值,求链上价值和 题解:树上带修 ...

  6. BZOJ 3052/Luogu P4074 [wc2013]糖果公园 (树上带修莫队)

    题面 中文题面,难得解释了 BZOJ传送门 Luogu传送门 分析 树上带修莫队板子题... 开始没给分块大小赋初值T了好一会... CODE #include <bits/stdc++.h&g ...

  7. LUOGU P4074 [WC2013]糖果公园 (树上带修莫队)

    传送门 解题思路 树上带修莫队,搞了两天..终于开O2+卡常大法贴边过了...bzoj上跑了183s..其实就是把树上莫队和带修莫队结合到一起,首先求出括号序,就是进一次出一次那种的,然后如果求两个点 ...

  8. BZOJ 3052 树上带修莫队

    思路: 就是把带修莫队移到了树上 块的大小开到(n^2/3)/2 比较好- 这是一个卡OJ好题 //By SiriusRen #include <cmath> #include <c ...

  9. 牛客挑战赛48E-速度即转发【带修莫队,分块】

    正题 题目链接:https://ac.nowcoder.com/acm/contest/11161/E 题目大意 给出\(n\)个数字的一个序列,\(m\)个操作. 给出\(l,r,k\),求一个最大 ...

随机推荐

  1. 506C Mr. Kitayuta vs. Bamboos

    分析 代码 #include<bits/stdc++.h> using namespace std; #define int long long ],h[],now[],cnt[]; in ...

  2. python使用内置方法和修饰器方法获取类名、函数名

    1. 外部获取 从外部的情况好获取,可以使用指向函数的对象,然后用__name__属性. def a(): pass a.__name__ 或者 getattr(a,'__name__') 2. 内部 ...

  3. 浅谈移动端设备标识码:DeviceID、IMEI、IDFA、UDID和UUID -费元星

    在公司做数据分析的时候,发现NA端有很多ID,所有来系统的理解一下,有问题大家多指出   [心路历程] 最近刚好在思考工作中统计数据所用的标识码产生的数据误差到底有多大,借此机会几番搜索资料+请教大神 ...

  4. 用例a失败,跳过测试用例b和c并标记失败xfail

    前言 当用例a失败的时候,如果用例b和用例c都是依赖于第一个用例的结果,那可以直接跳过用例b和c的测试,直接给他标记失败xfail用到的场景,登录是第一个用例,登录之后的操作b是第二个用例,登录之后操 ...

  5. jupyter 服务器安装随笔

    python3:python3 -m pip install --upgrade pip python3 -m pip install jupyterpkg install py36-pyzmq-18 ...

  6. 【Linux 应用编程】基础知识

    错误提示 Linux 提供的系统调用API,通常会在失败的时候返回 -1.如果想获取更多更详细的报错信息,需要借助全局变量 errno 和 perror 函数: #include <stdio. ...

  7. Golang基础(4):Go结构体

    当我们要表示同一种数据类型时候,可以用到数组,切片和字典. 当我们要表示不同的数据类型呢?这时候就要用到结构体了 一:定义struct 关键字 type 和 struct 来定义结构体 type st ...

  8. docker安装tomcat&部署javaweb程序

    一.docker定制简单的java-web应用镜像 网址: 1.jdk下载网址:https://www.oracle.com/technetwork/java/javase/downloads/jdk ...

  9. kafka学习(七)

    跨集群数据镜像 跨集群镜像的使用场景 1.区域集群和中心集群 2.冗余,发生紧急情况下使用第二个集群,保存相同的数据. 3.云迁移   多集群架构   跨集群中心通信的一些现实情况 1.高延迟 2.有 ...

  10. jmeter应用之批量插入数据

    上一篇讲到如何在jmeter中配置并连接使用mysql数据库,这一节主要是讲数据库连接的简单应用——批量插入数据 总体步骤如下: 1)新建线程组和添加JDBC Connection Configura ...