关于ADM和高维空间下距离度量的问题
最近聆听了两个IEEE FELLOW的高论。周末北大林老师来学校做了个报告,讲了很多新的机器学习概念。但是本人更关注的低秩学习,林老师只字未提。虽然如此,林老师的论文最近还是深入研究了很多,有多少改进的空间先不说,一篇LADMAP就需要看好几篇论文甚至回溯到十几年前的一些论文。或者说,当目标函数中有多个要求的变量的时候,一般采用ADM方法。但是一般会选用ADM的改进方法,比如11年林老师的ALADMAP方法。然而光看这篇也不能看懂,因为算法中又使用了林老师10年的一篇论文的方法,简单说就是一个低秩学习的约束条件。不过这个约束条件,也许大牛们觉得不屑于用文字在论文里解释两行吧。。不过还是要感谢林老师提供了fast版的开源程序。
总之,低秩似乎还是在说降维的事。那么降维是为了加快计算是显而易见的,还有没有其他原因呢。
d为特征空间的维度,当其趋于无穷大时,距离测量开始失去其在高维空间中测量不相似性的有效性。这样,就需要寻找合适的度量,或者降维。
另一个问题就是惩罚项的问题。正好遇到北辰新聘的墨尔本的客座IEEE FELLOW,于是专门问了一下这个事。加惩罚项没关系,关键是损失函数和惩罚项要匹配,或者说这样凑成的目标函数之前有标准的被证明是凸的问题。再就是神经网络中如果增加惩罚项,也要考虑看相应的论文再采用能用的惩罚项策略。
关于ADM和高维空间下距离度量的问题的更多相关文章
- Computer Science Theory for the Information Age-3: 高维空间中的高斯分布和随机投影
高维空间中的高斯分布和随机投影 (一)在高维球体表面产生均匀分布点的方法 我们来考虑一个采样问题,就是怎样在高维单位球体的表面上均匀的采样.首先,考虑二维的情况,就是在球形的周长上采样.我们考虑如下方 ...
- 概率分布之间的距离度量以及python实现(四)
1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- 概率分布之间的距离度量以及python实现
1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧 ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- ML 07、机器学习中的距离度量
机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时, ...
- Computer Science Theory for the Information Age-1: 高维空间中的球体
高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age> ...
- 机器学习方法、距离度量、K_Means
特征向量 1.特征向量:以人为例,每个元素可能就对应这人的某些方面,这就是特征,例如:身高.年龄.性别.国际....2.特征工程:目的就是将现有数据中可作为信号的特征与那些仅是噪声的特征区分开来:当数 ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
随机推荐
- 自定义配置节点configSections的使用
//App.config <?xml version="1.0" encoding="utf-8" ?><configuration> ...
- spring hibernate 事务整合 使用测试类 事务不自动提交的问题!!!
使用JUnit 测试hibernate 事务管理的时候应注意 ,测试类完成是默认回滚的. 所以只能查询数据库却不能增删改数据库. 应该在测试类上面加上注解 @Rollback(false) 表似默认 ...
- javascript 访问 webservice
xml: <?xml version="1.0" encoding="UTF-8"?> <boolean xmlns="http:/ ...
- office问题解决办法汇总
1.Office2007或2010提示:您正试图运行的函数包含有宏或需要宏语言支持的内容 解决办法:word选项--加载项--管理com加载项--转到--把所有加载项删除 2.excel2010打开三 ...
- 所遇Oracle错误代码
ORA-00905: 缺失关键字 少了空格或关键字写错 ORA-00922: 选项缺失或无效 错误原因:一般是语句的语法有问题.比如命名不对,关键字写错等等.对于非标准的命名,一般采用双引号来创建 ...
- CentOS下搭建docker+.net core
运行环境: CentOS 7.0 容器:Docker 1.13.1 .Net Core版本: .NET Core 2.1,安装详见 CentOS 7 下安装.NET Core SDK 2.1 1.安装 ...
- 你知道 Java 类是如何被加载的吗?
前言 最近给一个非 Java 方向的朋友讲了下双亲委派模型,朋友让我写篇文章深度研究下JVM 的 ClassLoader,我确实也好久没写 JVM 相关的文章了,有点手痒痒,涂了皮炎平也抑制不住的那种 ...
- MyBatis逆向工程无效
在Taget目录下修改的东西无法逆向, 在源代码目录就可以
- 4-2如何判断字符串a是否以字符串b开头或结尾
1.相关介绍 1.1修改文件权限和查看文件权限 在windows平台实验时 os.chmod()无法将文件权限修改为可执行,暂不深究如何实现.在linux平台进行测试. (1)创建三个文件 pytho ...
- webshell查杀
大部分Webshell查杀工具都是基于关键字特征的,通常他们会维护一个关键字列表,以此遍历指定扩展名的文件来进行扫描,所以可能最先想到的是各种字符串变形,下面总结了一些小的方法,各种不足之前还请看官拍 ...