【题目链接】

http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17875

【题意】

给定一个图,图的权定义为边的两端点相抑或值的和。问如何给没有权值的点分配权值使得图的权值最小。

【思路】

考虑每一二进制位i,即我们要依次确定每一二进制位且构造该二进制位的最优方案,建图如下:

  1. (S,u,inf)            u的i位为0
  2. (u,T,inf)            u的i位为1
  3. (u,v,1)(v,u,1)     u,v之间有边相连

  S集第i位为0,T集第i位为1,该图的一个最小割中的边的两端是第i位不同的两个点,所以最小割即为产生抑或值,且是最小值。

  然后更新T集中点的点值。

【代码】

 #include<set>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define trav(u,i) for(int i=front[u];i;i=e[i].nxt)
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; typedef long long ll;
const int N = 1e4+;
const int inf = 1e9; ll read() {
char c=getchar();
ll f=,x=;
while(!isdigit(c)) {
if(c=='-') f=-; c=getchar();
}
while(isdigit(c))
x=x*+c-'',c=getchar();
return x*f;
} struct Edge {
int u,v,cap,flow;
};
struct Dinic {
int n,m,s,t;
int d[N],cur[N],vis[N];
vector<int> g[N];
vector<Edge> es;
queue<int> q;
void init(int n) {
this->n=n;
es.clear();
FOR(i,,n) g[i].clear();
}
void clear() {
FOR(i,,(int)es.size()-) es[i].flow=;
}
void AddEdge(int u,int v,int w) {
es.push_back((Edge){u,v,w,});
es.push_back((Edge){v,u,,});
m=es.size();
g[u].push_back(m-);
g[v].push_back(m-);
}
int bfs() {
memset(vis,,sizeof(vis));
q.push(s); d[s]=; vis[s]=;
while(!q.empty()) {
int u=q.front(); q.pop();
FOR(i,,(int)g[u].size()-) {
Edge& e=es[g[u][i]];
int v=e.v;
if(!vis[v]&&e.cap>e.flow) {
vis[v]=;
d[v]=d[u]+;
q.push(v);
}
}
}
return vis[t];
}
int dfs(int u,int a) {
if(u==t||!a) return a;
int flow=,f;
for(int& i=cur[u];i<g[u].size();i++) {
Edge& e=es[g[u][i]];
int v=e.v;
if(d[v]==d[u]+&&(f=dfs(v,min(a,e.cap-e.flow)))>) {
e.flow+=f;
es[g[u][i]^].flow-=f;
flow+=f; a-=f;
if(!a) break;
}
}
return flow;
}
int MaxFlow(int s,int t) {
this->s=s,this->t=t;
int flow=;
while(bfs()) {
memset(cur,,sizeof(cur));
flow+=dfs(s,inf);
}
return flow;
}
} dc; int T,n,m,s,t,K,u[N],v[N],a[N],vis[N],val[N]; void dfs(int u,int x)
{
vis[u]=; val[u]+=x;
FOR(i,,(int)dc.g[u].size()-) {
Edge& e=dc.es[dc.g[u][i]^]; //从T开始 判断反向边
if(!vis[e.u]&&e.cap>e.flow) dfs(e.u,x);
}
}
void build(int x)
{
s=,t=n+;
dc.init(n+);
FOR(i,,n) if(a[i]>=) {
if(a[i]&x) dc.AddEdge(i,t,inf);
else dc.AddEdge(s,i,inf);
}
FOR(i,,m) {
dc.AddEdge(u[i],v[i],);
dc.AddEdge(v[i],u[i],);
}
}
void init()
{
memset(val,,sizeof(val));
memset(a,-,sizeof(a));
}
int main()
{
T=read();
while(T--) {
init();
n=read(),m=read();
FOR(i,,m)
u[i]=read(),v[i]=read();
K=read();
FOR(i,,K) {
int u=read();
a[u]=read();
}
FOR(i,,) {
int x=<<i;
build(x);
dc.MaxFlow(s,t);
memset(vis,,sizeof(vis));
dfs(t,x);
}
FOR(i,,n)
if(a[i]>=) printf("%d\n",a[i]);
else printf("%d\n",val[i]);
}
return ;
}

P.S.太神太巧妙辣 0.0

spoj 839 Optimal Marks(二进制位,最小割)的更多相关文章

  1. 【bzoj2400】Spoj 839 Optimal Marks 网络流最小割

    题目描述 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其余的点的值由你 ...

  2. SPOJ 839 Optimal Marks(最小割的应用)

    https://vjudge.net/problem/SPOJ-OPTM 题意: 给出一个无向图G,每个点 v 以一个有界非负整数 lv 作为标号,每条边e=(u,v)的权w定义为该边的两个端点的标号 ...

  3. 【BZOJ2400】Spoj 839 Optimal Marks 最小割

    [BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...

  4. 【bzoj2400】Spoj 839 Optimal Marks 按位最大流

    Spoj 839 Optimal Marks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 908  Solved: 347[Submit][Stat ...

  5. SP839 Optimal marks(最小割)

    SP839 Optimal marks(最小割) 给你一个无向图G(V,E). 每个顶点都有一个int范围内的整数的标记. 不同的顶点可能有相同的标记.对于边(u,v),我们定义Cost(u,v)= ...

  6. SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)

    http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...

  7. BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)

    题面 一个无向图,一些点有固定权值,另外的点权值由你来定. 边的值为两点的异或值,一个无向图的值定义为所有边的值之和. 求无向图的最小值 分析 每一位都互不干扰,按位处理. 用最小割算最小值 保留原图 ...

  8. BZOJ2400: Spoj 839 Optimal Marks

    Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其 ...

  9. SPOJ839 Optimal Marks(最小割)

    题目大概说给一张图,每个点都有权,边的权等于其两端点权的异或和,现已知几个点的权,为了使所有边的边权和最小,其他点的权值该是多少. 很有意思的一道题,完全看不出和网络流有什么关系. 考虑每个未知的点$ ...

随机推荐

  1. 苹果操作系统Mac OS X

    OS X 是先进的操作系统.基于坚如磐石的 UNIX 基础,设计简单直观,让处处创新的 Mac 安全易用,高度兼容,出类拔萃. UNIX 之威力,Mac 之简单OS X 既简单易用且功能强大.所有的一 ...

  2. Android:布局单位换算

    一.px 像素,是屏幕上显示数据的最基本的点. 二.dpi dpi(Dots Per Inch):每英寸点数,也可称为像素密度,即屏幕对角线像素值÷英寸值 比如480x800分辨率4.0英寸的手机计算 ...

  3. AngularJS初探:搭建PhoneCat项目的开发与测试环境

    AngularJS官方网站提供了一个用于学习的示例项目:PhoneCat.这是一个Web应用,用户可以浏览一些Android手机,了解它们的详细信息,并进行搜索和排序操作. 对于PhoneCat项目的 ...

  4. python脚本实例001 - 通过列表内容判断输入输出信息

    要点总结: 输入输出方法,input().print()方法 list列表应用,list是一种有序的集合,可以随时添加和删除其中的元素. 条件语句if-else应用 #! /usr/bin/pytho ...

  5. OpenCV在Android平台上的应用

    今年8月份, OpenCV 2.3.1发布了. 虽然从2.2开始, OpenCV就号称支持Android平台, 但真正能让OpenCV在Android上运行起来还是在2.3.1版本上. 在这个版本上, ...

  6. inline-block在ie6中的经典bug

    众所周知,给元素设置 inline-block ,可以让ie下的元素出发layout:1. 但是,当给元素设置 inline-block 后,在另外一个class 样式(非设置inline-block ...

  7. Effective C++学习笔记 条款04:确定对象被使用前已先被初始化

    一.为内置类型对象进行手工初始化,因为C++不保证初始化它们. 二.对象初始化数据成员是在进入构造函数用户编写代码前完成,要想对数据成员指定初始化值,那就必须使用初始化列表. class A { pu ...

  8. 函数mem_area_alloc

    /********************************************************************//** Allocates memory from a po ...

  9. uva1639 Candy

    组合数,对数. 这道题要用到20w的组合数,如果直接相乘的话,会丢失很多精度,所以用去对数的方式实现. 注意指数,因为取完一次后,还要再取一次才能发现取完,所以是(n+1)次方. double 会爆掉 ...

  10. Qt之启动外部程序

    简述 QProcess可以用来启动外部程序,并与它们交互. 要启动一个进程,通过调用start()来进行,参数包含程序的名称和命令行参数,参数作为一个QStringList的单个字符串. 另外,也可以 ...