国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html
内部邀请码:C8E245J (不写邀请码,没有现金送)
国内私募机构九鼎控股打造,九鼎投资是在全国股份转让系统挂牌的公众公司,股票代码为430719,为中国PE第一股,市值超1000亿元。 

------------------------------------------------------------------------------------------------------------------------------------------------------------------

原文地址: http://my.oschina.net/lanzp/blog/309078

目录[-]

1、开发配置环境:

开发环境:Win7(64bit)+Eclipse(kepler service release 2)

配置环境:Ubuntu Server 14.04.1 LTS(64-bit only)

辅助工具:WinSCP + Putty

Hadoop版本:2.5.0

Hadoop的Eclipse开发插件(2.x版本适用):http://pan.baidu.com/s/1eQy49sm

服务器端JDK版本:OpenJDK7.0

以上所有工具请自行下载安装。

2、Hadoop服务端配置(Master节点)

最近一直在摸索Hadoop2的配置,因为Hadoop2对原有的一些框架API做了调整,但也还是兼容旧版本的(包括配置)。像我这种就喜欢用新的东西的人,当然要尝一下鲜了,现在网上比较少新版本的配置教程,那么下面我就来分享一下我自己的实战经验,如有不正确的地欢迎指正:)。

假设我们已经成功地安装了Ubuntu Server、OpenJDK、SSH,如果还没有安装的话请先安装,自己网上找一下教程,这里我就说一下SSH的无口令登陆设置。首先通过

1
  $ ssh localhost

测试一下自己有没有设置好无口令登陆,如果没有设置好,系统将要求你输入密码,通过下面的设置可以实现无口令登陆,具体原理请百度谷歌:

1
2
$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

其次是Hadoop安装(假设已经安装好OpenJDK以及配置好了环境变量),到Hadoop官网下载一个Hadoop2.5.0版本的下来,好像大概有100多M的tar.gz包,下载 下来后自行解压,我的是放在/usr/mywind下面,Hadoop主目录完整路径是/usr/mywind/hadoop,这个路径根据你个人喜好放吧。

解压完后,打开hadoop主目录下的etc/hadoop/hadoop-env.sh文件,在最后面加入下面内容:

1
2
3
4
5
# set to the root of your Java installation
  export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64
  
# Assuming your installation directory is /usr/mywind/hadoop
export HADOOP_PREFIX=/usr/mywind/hadoop

为了方便起见,我建设把Hadoop的bin目录及sbin目录也加入到环境变量中,我是直接修改了Ubuntu的/etc/environment文件,内容如下:

1
2
3
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/usr/lib/jvm/java-7-openjdk-amd64/bin:/usr/mywind/hadoop/bin:/usr/mywind/hadoop/sbin"
JAVA_HOME="/usr/lib/jvm/java-7-openjdk-amd64"
CLASSPATH=".:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar"

也可以通过修改profile来完成这个设置,看个人习惯咯。假如上面的设置你都完成了,可以在命令行里面测试一下Hadoop命令,如下图:

假如你能看到上面的结果,恭喜你,Hadoop安装完成了。接下来我们可以进行伪分布配置(Hadoop可以在伪分布模式下运行单结点)。

接下来我们要配置的文件有四个,分别是/usr/mywind/hadoop/etc/hadoop目录下的yarn-site.xml、mapred-site.xml、hdfs-site.xml、core-site.xml(注意:这个版本下默认没有yarn-site.xml文件,但有个yarn-site.xml.properties文件,把后缀修改成前者即可),关于yarn新特性可以参考官网或者这个文章http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/。

首先是core-site.xml配置HDFS地址及临时目录(默认的临时目录在重启后会删除):

1
2
3
4
5
6
7
8
9
10
11
12
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://192.168.8.184:9000</value>
         <description>same as fs.default.name</description>
    </property>
     <property>
       <name>hadoop.tmp.dir</name>
       <value>/usr/mywind/tmp</value>
        <description>A base for other temporary directories.</description>
     </property>
</configuration>

然后是hdfs-site.xml配置集群数量及其他一些可选配置比如NameNode目录、DataNode目录等等:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
<configuration>
     <property>
        <name>dfs.namenode.name.dir</name>
        <value>/usr/mywind/name</value>
        <description>same as dfs.name.dir</description>
     </property>
     <property>
        <name>dfs.datanode.data.dir</name>
        <value>/usr/mywind/data</value>
        <description>same as dfs.data.dir</description>
     </property>
     <property>
        <name>dfs.replication</name>
        <value>1</value>
        <description>same as old frame,recommend set the value as the cluster DataNode host numbers!</description>
     </property>
</configuration>

接着是mapred-site.xml配置启用yarn框架:

1
2
3
4
5
6
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

最后是yarn-site.xml配置NodeManager:

1
2
3
4
5
6
7
<configuration>
 <!-- Site specific YARN configuration properties --> 
  <property
         <name>yarn.nodemanager.aux-services</name
         <value>mapreduce_shuffle</value
  </property
</configuration>

注意,网上的旧版本教程可能会把value写成mapreduce.shuffle,这个要特别注意一下的,至此我们所有的文件配置都已经完成了,下面进行HDFS文件系统进行格式化:

1
2
          
$ hdfs namenode -format

然后启用NameNode及DataNode进程:

1
2
        
$ start-yarn.sh

然后创建hdfs文件目录

1
2
$ hdfs dfs -mkdir /user
$ hdfs dfs -mkdir /user/a01513

注意,这个a01513是我在Ubuntu上的用户名,最好保持与系统用户名一致,据说不一致会有许多权限等问题,我之前试过改成其他名字,报错,实在麻烦就改成跟系统用户名一致吧。

然后把要测试的输入文件放在文件系统中:

1
$ hdfs dfs -put /usr/mywind/psa input

文件内容是Hadoop经典的天气例子的数据:

1
2
3
4
5
6
7
8
9
12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+001212345678903456
12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+011212345678903456
12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+021212345678903456
12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+003212345678903456
12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+004212345678903456
12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+010212345678903456
12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+011212345678903456
12345679867623119010123456798676231190501234567986762311901012345679867623119010123456+041212345678903456
12345679867623119010123456798676231190501234567986762311901012345679867623119010123456+008212345678903456

把文件拷贝到HDFS目录之后,我们可以通过浏览器查看相关的文件及一些状态:

http://192.168.8.184:50070/

这里的IP地址根据你实际的Hadoop服务器地址啦。

好吧,我们所有的Hadoop后台服务搭建跟数据准备都已经完成了,那么我们的M/R程序也要开始动手写了,不过在写当然先配置开发环境了。

3、基于Eclipse的Hadoop2.x开发环境配置

关于JDK及ECLIPSE的安装我就不再介绍了,相信能玩Hadoop的人对这种配置都已经再熟悉不过了,如果实在不懂建议到谷歌百度去搜索一下教程。假设你已经把Hadoop的Eclipse插件下载下来了,然后解压把jar文件放到Eclipse的plugins文件夹里面:

重启Eclipse即可。

然后我们再安装Hadoop到Win7下,在这不再详细说明,跟安装JDK大同小异,在这个例子中我安装到了E:\hadoop。

启动Eclipse,点击菜单栏的【Windows/窗口】→【Preferences/首选项】→【Hadoop Map/Reduce】,把Hadoop Installation Directory设置成开发机上的Hadoop主目录:

点击OK。

开发环境配置完成,下面我们可以新建一个测试Hadoop项目,右键【NEW/新建】→【Others、其他】,选择Map/Reduce Project

输入项目名称点击【Finish/完成】:

创建完成后可以看到如下目录:

然后在SRC下建立下面包及类:

以下是代码内容:

TestMapper.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
package com.my.hadoop.mapper;
  
import java.io.IOException;
  
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
  
public class TestMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
         private static final int MISSING = 9999;
         private static final Log LOG = LogFactory.getLog(TestMapper.class);
  
          public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter)
               throws IOException {
             String line = value.toString();
             String year = line.substring(1519);
             int airTemperature;
             if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
               airTemperature = Integer.parseInt(line.substring(8892));
             else {
               airTemperature = Integer.parseInt(line.substring(8792));
             }
             LOG.info("loki:"+airTemperature);
             String quality = line.substring(9293);
             LOG.info("loki2:"+quality);
             if (airTemperature != MISSING && quality.matches("[012459]")) {
               LOG.info("loki3:"+quality);
               output.collect(new Text(year), new IntWritable(airTemperature));
             }
           }
  
}

TestReducer.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
package com.my.hadoop.reducer;
  
import java.io.IOException;
import java.util.Iterator;
  
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.Reducer;
  
public class TestReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
  
         @Override
           public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter)
               throws IOException{
             int maxValue = Integer.MIN_VALUE;
             while (values.hasNext()) {
               maxValue = Math.max(maxValue, values.next().get());
             }
             output.collect(key, new IntWritable(maxValue));
           }
  
}

TestHadoop.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
package com.my.hadoop.test.main;
  
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
  
import com.my.hadoop.mapper.TestMapper;
import com.my.hadoop.reducer.TestReducer;
  
public class TestHadoop {
         
         public static void main(String[] args) throws Exception{
                   
                   if (args.length != 2) {
                         System.err
                             .println("Usage: MaxTemperature <input path> <output path>");
                         System.exit(-1);
                       }
                   JobConf job = new JobConf(TestHadoop.class);
             job.setJobName("Max temperature");
             FileInputFormat.addInputPath(job, new Path(args[0]));
             FileOutputFormat.setOutputPath(job, new Path(args[1]));
             job.setMapperClass(TestMapper.class);
             job.setReducerClass(TestReducer.class);
             job.setOutputKeyClass(Text.class);
             job.setOutputValueClass(IntWritable.class);
             JobClient.runJob(job);
         }
         
}

为了方便对于Hadoop的HDFS文件系统操作,我们可以在Eclipse下面的Map/Reduce Locations窗口与Hadoop建立连接,直接右键新建Hadoop连接即可:

连接配置如下:

然后点击完成即可,新建完成后,我们可以在左侧目录中看到HDFS的文件系统目录:

这里不仅可以显示目录结构,还可以对文件及目录进行删除、新增等操作,非常方便。

当上面的工作都做好之后,就可以把这个项目导出来了(导成jar文件放到Hadoop服务器上运行):

点击完成,然后把这个testt.jar文件上传到Hadoop服务器(192.168.8.184)上,目录(其实可以放到其他目录,你自己喜欢)是:

1
/usr/mywind/hadoop/share/hadoop/mapreduce

如下图:

4、运行Hadoop程序及查看运行日志

当上面的工作准备好了之后,我们运行自己写的Hadoop程序很简单:

1
$ hadoop  jar  /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar com.my.hadoop.test.main.TestHadoop   input  output

注意这是output文件夹名称不能重复哦,假如你执行了一次,在HDFS文件系统下面会自动生成一个output文件夹,第二次运行时,要么把output文件夹先删除($ hdfs dfs -rmr /user/a01513/output),要么把命令中的output改成其他名称如output1、output2等等。

如果看到以下输出结果,证明你的运行成功了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
a01513@hadoop :~$ hadoop jar /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar                                                                              com.my.hadoop.test.main.TestHadoop input output
14/09/02 11:14:03 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0                                                                             :8032
14/09/02 11:14:04 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0                                                                             :8032
14/09/02 11:14:04 WARN mapreduce.JobSubmitter: Hadoop command-line option parsin                                                                             g not performed. Implement the Tool interface and execute your application with                                                                              ToolRunner to remedy this.
14/09/02 11:14:04 INFO mapred.FileInputFormat: Total input paths to process : 1
14/09/02 11:14:04 INFO mapreduce.JobSubmitter: number of splits:2
14/09/02 11:14:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_14                                                                             09386620927_0015
14/09/02 11:14:05 INFO impl.YarnClientImpl: Submitted application application_14                                                                             09386620927_0015
14/09/02 11:14:05 INFO mapreduce.Job: The url to track the job: http://hadoop:80                                                                             88/proxy/application_1409386620927_0015/
14/09/02 11:14:05 INFO mapreduce.Job: Running job: job_1409386620927_0015
14/09/02 11:14:12 INFO mapreduce.Job: Job job_1409386620927_0015 running in uber mode : false
14/09/02 11:14:12 INFO mapreduce.Job:  map 0% reduce 0%
14/09/02 11:14:21 INFO mapreduce.Job:  map 100% reduce 0%
14/09/02 11:14:28 INFO mapreduce.Job:  map 100% reduce 100%
14/09/02 11:14:28 INFO mapreduce.Job: Job job_1409386620927_0015 completed successfully
14/09/02 11:14:29 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=105
                FILE: Number of bytes written=289816
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=1638
                HDFS: Number of bytes written=10
                HDFS: Number of read operations=9
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters
                Launched map tasks=2
                Launched reduce tasks=1
                Data-local map tasks=2
                Total time spent by all maps in occupied slots (ms)=14817
                Total time spent by all reduces in occupied slots (ms)=4500
                Total time spent by all map tasks (ms)=14817
                Total time spent by all reduce tasks (ms)=4500
                Total vcore-seconds taken by all map tasks=14817
                Total vcore-seconds taken by all reduce tasks=4500
                Total megabyte-seconds taken by all map tasks=15172608
                Total megabyte-seconds taken by all reduce tasks=4608000
        Map-Reduce Framework
                Map input records=9
                Map output records=9
                Map output bytes=81
                Map output materialized bytes=111
                Input split bytes=208
                Combine input records=0
                Combine output records=0
                Reduce input groups=1
                Reduce shuffle bytes=111
                Reduce input records=9
                Reduce output records=1
                Spilled Records=18
                Shuffled Maps =2
                Failed Shuffles=0
                Merged Map outputs=2
                GC time elapsed (ms)=115
                CPU time spent (ms)=1990
                Physical memory (bytes) snapshot=655314944
                Virtual memory (bytes) snapshot=2480295936
                Total committed heap usage (bytes)=466616320
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters
                Bytes Read=1430
        File Output Format Counters
                Bytes Written=10
a01513@hadoop :~$

我们可以到Eclipse查看输出的结果:

或者用命令行查看:

1
2
  
$ hdfs dfs -cat output/part-00000

假如你们发现运行后结果是为空的,可能到日志目录查找相应的log.info输出信息,log目录在:/usr/mywind/hadoop/logs/userlogs 下面。

好了,不太喜欢打字,以上就是整个过程了,欢迎大家来学习指正。

Hadoop伪分布配置与基于Eclipse开发环境搭建的更多相关文章

  1. JavaEE开发基于Eclipse的环境搭建以及Maven Web App的创建

    本篇博客就完整的来聊一下如何在Eclipse中创建的Maven Project.本篇博客是JavaEE开发的开篇,也是基础.本篇博客的内容干货还是比较多的,而且比较实用,并且都是采用目前最新版本的工具 ...

  2. JavaEE开发之基于Eclipse的环境搭建以及Maven Web App的创建

    本篇博客就完整的来聊一下如何在Eclipse中创建的Maven Project.本篇博客是JavaEE开发的开篇,也是基础.本篇博客的内容干货还是比较多的,而且比较实用,并且都是采用目前最新版本的工具 ...

  3. spark-windows(含eclipse配置)下本地开发环境搭建

    spark-windows(含eclipse配置)下本地开发环境搭建   >>>>>>注意:这里忽略JDK的安装,JDK要求是1.8及以上版本,请通过 java  ...

  4. [转]MonkeyRunner在Windows下的Eclipse开发环境搭建步骤(兼解决网上Jython配置出错的问题)

    MonkeyRunner在Windows下的Eclipse开发环境搭建步骤(兼解决网上Jython配置出错的问题)   网上有一篇shangdong_chu网友写的文章介绍如何在Eclipse上配置M ...

  5. 大数据应用之Windows平台Hbase客户端Eclipse开发环境搭建

    大数据应用之Windows平台Hbase客户端Eclipse开发环境搭建 大数据应用之Windows平台Hbase客户端Eclipse环境搭建-Java版 作者:张子良 版权所有,转载请注明出处 引子 ...

  6. Hadoop Eclipse开发环境搭建

        This document is from my evernote, when I was still at baidu, I have a complete hadoop developme ...

  7. (转)Hadoop Eclipse开发环境搭建

    来源:http://www.cnblogs.com/justinzhang/p/4261851.html This document is from my evernote, when I was s ...

  8. libgdx for eclipse开发环境搭建

    1.安装jdk1.7以上 2.下载libgdx1.2.0 下载地址:https://libgdx.badlogicgames.com/releases 3.下载项目创建工具(老版本的) 下载地址:ht ...

  9. zookeeper Eclipse 开发环境搭建及简单示例

    一,下载Zookeeper安装包 从官方网站下载稳定版安装包后,解压. 其中ZK_HOME 为:D:\Program Files\zookeeper-3.4.9 二,启动Zookeeper Serve ...

随机推荐

  1. Java 中无参带返回值方法的使用

    如果方法不包含参数,但有返回值,我们称为无参带返回值的方法. 例如:下面的代码,定义了一个方法名为 calSum ,无参数,但返回值为 int 类型的方法,执行的操作为计算两数之和,并返回结果 在 c ...

  2. Arduino中的数据类型范围

    注意int不是4字节而仅仅是2字节!!! int: -32,768 ~ 32,767 (2字节) long: 4字节 http://www.arduino.cc/en/Reference/Int

  3. nginx的配置,要求根据不同的来路域名,发送到不同的端口去处理

    这一台电脑上既有tomcat 也有 apache,他俩是没有办法同时享用80端口的.我现在让tomcat用8088,apache用8080,然后让nginx用80,这样nginx在收到请求后,根据不同 ...

  4. Informatica9.6.1在Linux Red Hat 5.8上安装遇到的有关问题整理_1

    1.  产品安装过程中提示无法创建Domain([ICMD_10033] Command [defineDomain] failed with error [[INFASETUP_10002]) 1) ...

  5. C++中,申请字符串数组可用new实现

    C++中,申请字符串数组可用new实现: char ** list = new char*[MAX_NUM]; for (int i = 0; i< MAX_LOOP; i++) list[i] ...

  6. opengl奔溃问题

    按照网上的教程编译成功,当时运行时老是奔溃(不弹出任何提示,窗口变灰色).遂更新了ATI的显卡驱动果然可以运行了,哈哈 http://support.amd.com/en-us/download/de ...

  7. [转]SqlPlus安装配置

    本文转载自http://blog.csdn.net/wuxiaoyan_home/article/details/4826440 一.下载oracle 10g sqlplus软件 http://www ...

  8. C#语言基础01

    Console.WriteLine("hello"); Console.ReadKey();// 按一个按键继续执行 string s=Console.ReadLine();//用 ...

  9. 20+非常棒的Photoshop卡通设计教程

    现在把一个人的脸变成卡通图案再用它来当头像这种现象使非常常见的,同样的卡通插图可以用于多种渠道的设计.网上有很多公司都会创立一种吉祥物并把它应用到市场营销中.因为有了类似于photoshop这样强大的 ...

  10. Java Web高性能开发(二)

    今日要闻: 性价比是个骗局: 对某个产品学上三五天个把月,然后就要花最少的钱买最多最好的东西占最大的便宜. 感谢万能的互联网,他顺利得手,顺便享受了智商上的无上满足以及居高临下的优越感--你们一千块买 ...