Description
There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input
The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output
There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20

Sample Output

1 3 5 2

题目大意:给你一个无向图,要你求最小环,并输出路径

用floyd求最短路时顺便求最小环

floyd主程序

 for k:= to n do
for i:= to n do
for j:= to n do
f[i,j]:=min(f[i,j],f[i,k]+f[k,j]);

然后我们可以在里面加一点东西

 for k:= to n do
begin
for i:= to k- do
for j:= to i- do
minc:=min(minc,f[i,j]+g[i,k]+g[k,j]);
for i:= to n do
for j:= to n do
f[i,j]:=min(f[i,j],f[i,k]+f[k,j]);
end;

g存的是原图信息

因为当k枚举到a时,最短路除了两端点外,都只能经过编号小于a的点

在最小环中,一定有一个编号最大的点,而且只有一个(废话......)

设这个点编号为b,当k枚举到b时,i,j枚举到b在环上相邻的两点时,f[i,j]存的是i,j之间不通过大于b的点的最短路,这当然就是最小环了

 const
maxn=;
var
f,g,p:array[..maxn,..maxn]of longint;
path:array[..maxn]of longint;
ans,tot,n,m:longint; procedure init;
var
i,x,y,z:longint;
begin
read(n,m);
fillchar(g,sizeof(g),);
for i:= to m do
begin
read(x,y,z);
if g[x,y]>z then
begin
g[x,y]:=z;
g[y,x]:=z;
end;
end;
f:=g;
end; procedure get(i,j:longint);
begin
if p[i,j]<> then
begin
get(i,p[i,j]);
get(p[i,j],j);
exit;
end;
inc(tot);
path[tot]:=j;
end; procedure work;
var
i,j,k:longint;
begin
ans:=g[,];
for k:= to n do
begin
for i:= to k- do
for j:= to i- do
if ans>f[i,j]+g[i,k]+g[k,j] then
begin
ans:=f[i,j]+g[i,k]+g[k,j];
tot:=;
inc(tot);
path[tot]:=i;
get(i,j);
inc(tot);
path[tot]:=k;
end;
for i:= to n do
for j:= to n do
if f[i,j]>f[i,k]+f[k,j] then
begin
p[i,j]:=k;
f[i,j]:=f[i,k]+f[k,j];
end;
end;
if ans=g[,] then write('No solution.')
else
for i:= to tot do
write(path[i],' ');
end; begin
init;
work;
end.

POJ1734 - Sightseeing trip的更多相关文章

  1. poj1734 Sightseeing trip【最小环】

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:8588   Accepted:3224   ...

  2. poj1734 Sightseeing trip(Floyd求无向图最小环)

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  3. poj1734 Sightseeing trip[最小环]

    一个最小环裸题.最小环的两种求法dijkstra和Floyd直接参见这里我就是从这里学的,不想写了. 注意这里最重要的一个点是利用了Floyd的dp过程中路径上点不超过$k$这一性质,来枚举环上最大编 ...

  4. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  5. 「POJ1734」Sightseeing trip

    「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...

  6. 【poj1734】Sightseeing trip

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8520   Accepted: 3200 ...

  7. URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...

  8. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  9. poj 1734 Sightseeing trip判断最短长度的环

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5590   Accepted: 2151 ...

随机推荐

  1. Ionic条码扫描

    http://m.blog.csdn.net/article/details?id=45843819

  2. Git CMD - branch: List, create, or delete branches

    命令格式 git branch [--color[=<when>] | --no-color] [-r | -a] [--list] [-v [--abbrev=<length> ...

  3. HDOJ2016数据的交换输出

    数据的交换输出 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  4. zookeeper启动报错(数据目录权限不对)

    zookeeper启动报错日志: 2016-11-16 11:19:43,880 [myid:3] - INFO [WorkerReceiver[myid=3]:FastLeaderElection@ ...

  5. java 调用bash shell脚本阻塞的小问题的解决

    java  调用bash shell脚本阻塞的小问题的解决 背景 使用java实现的web端,web端相应用户的界面操作,使用java调用bash实现的shell脚本进行实际的操作,操作完成返回执行结 ...

  6. PHP学习笔记 - 进阶篇(3)

    PHP学习笔记 - 进阶篇(3) 类与面向对象 1.类和对象 类是面向对象程序设计的基本概念,通俗的理解类就是对现实中某一个种类的东西的抽象, 比如汽车可以抽象为一个类,汽车拥有名字.轮胎.速度.重量 ...

  7. Bootstrap两端对齐的导航实例

    Bootstrap两端对齐的导航,样式剥离出来代码如下: <!DOCTYPE html> <html> <head> <title>Bootstrap ...

  8. 考虑virtual函数以外的其它选择

    详情见<Effective C++>item35 1.使用non-virtual interface(NVI)手法,这是Template Method设计模式的一种特殊形式. 它以publ ...

  9. CLI-error

    SQL_ERROR: One of the following occurred: RecNumber was negative or 0. BufferLength was less than ze ...

  10. Entity Framework Code First 迁移数据库

    新版EF,系统实现过程中如果对Model进行更改,队形修改数据库并不能正常运行项目,需要借助Code First 手动迁移数据库 首先启用迁移,允许迁移Context Tools->Librar ...