POJ1734 - Sightseeing trip
Description
There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.
In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.
Input
The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).
Output
There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.
Sample Input
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
Sample Output
1 3 5 2
题目大意:给你一个无向图,要你求最小环,并输出路径
用floyd求最短路时顺便求最小环
floyd主程序
for k:= to n do
for i:= to n do
for j:= to n do
f[i,j]:=min(f[i,j],f[i,k]+f[k,j]);
然后我们可以在里面加一点东西
for k:= to n do
begin
for i:= to k- do
for j:= to i- do
minc:=min(minc,f[i,j]+g[i,k]+g[k,j]);
for i:= to n do
for j:= to n do
f[i,j]:=min(f[i,j],f[i,k]+f[k,j]);
end;
g存的是原图信息
因为当k枚举到a时,最短路除了两端点外,都只能经过编号小于a的点
在最小环中,一定有一个编号最大的点,而且只有一个(废话......)
设这个点编号为b,当k枚举到b时,i,j枚举到b在环上相邻的两点时,f[i,j]存的是i,j之间不通过大于b的点的最短路,这当然就是最小环了
const
maxn=;
var
f,g,p:array[..maxn,..maxn]of longint;
path:array[..maxn]of longint;
ans,tot,n,m:longint; procedure init;
var
i,x,y,z:longint;
begin
read(n,m);
fillchar(g,sizeof(g),);
for i:= to m do
begin
read(x,y,z);
if g[x,y]>z then
begin
g[x,y]:=z;
g[y,x]:=z;
end;
end;
f:=g;
end; procedure get(i,j:longint);
begin
if p[i,j]<> then
begin
get(i,p[i,j]);
get(p[i,j],j);
exit;
end;
inc(tot);
path[tot]:=j;
end; procedure work;
var
i,j,k:longint;
begin
ans:=g[,];
for k:= to n do
begin
for i:= to k- do
for j:= to i- do
if ans>f[i,j]+g[i,k]+g[k,j] then
begin
ans:=f[i,j]+g[i,k]+g[k,j];
tot:=;
inc(tot);
path[tot]:=i;
get(i,j);
inc(tot);
path[tot]:=k;
end;
for i:= to n do
for j:= to n do
if f[i,j]>f[i,k]+f[k,j] then
begin
p[i,j]:=k;
f[i,j]:=f[i,k]+f[k,j];
end;
end;
if ans=g[,] then write('No solution.')
else
for i:= to tot do
write(path[i],' ');
end; begin
init;
work;
end.
POJ1734 - Sightseeing trip的更多相关文章
- poj1734 Sightseeing trip【最小环】
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions:8588 Accepted:3224 ...
- poj1734 Sightseeing trip(Floyd求无向图最小环)
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...
- poj1734 Sightseeing trip[最小环]
一个最小环裸题.最小环的两种求法dijkstra和Floyd直接参见这里我就是从这里学的,不想写了. 注意这里最重要的一个点是利用了Floyd的dp过程中路径上点不超过$k$这一性质,来枚举环上最大编 ...
- POJ1734 Sightseeing trip (Floyd求最小环)
学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...
- 「POJ1734」Sightseeing trip
「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...
- 【poj1734】Sightseeing trip
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8520 Accepted: 3200 ...
- URAL 1004 Sightseeing Trip(最小环)
Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- poj 1734 Sightseeing trip判断最短长度的环
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5590 Accepted: 2151 ...
随机推荐
- HTML+CSS总结/有关于web标准的总结
关于这一话题,我认为我们需要解决的问题有:什么是web标准?定义web标准的目的?遵循web标准的好处? 一.百度百科对web标准的解释: WEB标准不是某一个标准,而是一系列标准的集合. 网页的主要 ...
- AjaxForm
近乎的Ajax控件介绍,代码下载:http://www.jinhusns.com/Products/Download?type=whp AjaxForm 概述 功能说明 基于 ajaxForm 插件进 ...
- 详解在Visual Studio中使用git版本系统
转自:http://www.uml.org.cn/pzgl/201206211.asp
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
- Atl笔记二:BEGIN_COM_MAP
1,offsetofclass获取基类相对于子类的偏移位置. #define _ATL_PACKING 8#define offsetofclass(base, derived) ((DWORD_PT ...
- (四)Qt之右键菜单
1.右键菜单创建和显示 作为一种交互性强.使用方便的右键菜单在程序中是非常常用的,在Qt中可以轻松的实现. QMenu menu; //添加菜单项,指定图标.名称.响应函数 menu.addActio ...
- iOS进阶——App生命周期
State Description Not running The app has not been launched or was running but was terminated by the ...
- 完美高仿精仿京东商城手机客户端android版源码
完美高仿精仿京东商城手机客户端android版源码,是从安卓教程网那边转载过来的,这款应用源码非常不错的,也是一个非常优秀的应用源码的,希望能够帮到学习的朋友. _js_op> <igno ...
- 【Linux】rsync同步文件 & 程序自启动
rsync使用 1. 为什么使用rsync? rsync解决linux系统下文件同步时, 增量同步问题. 使用场景: 线上需要定时备份数据文件(视频资源), 使用rsync完成每天的增量备份. 参见: ...
- ubuntu vim 7.4 编译安装
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4137402.html 1.到官网 http://www.vim.org/download.p ...