题目链接

题意:有n个数,范围是[0, 10^18],n最大为100,找出若干个数使它们异或的值最大并输出这个最大值。

分析:

一道高斯消元的好题/

我们把每个数用二进制表示,要使得最后的异或值最大,就是要让高位尽量为1,高位能不能为1就必须用高斯消元判断了。

1. 根据数的二进制表示,建立方程组的矩阵,结果那列置为1。
2. 从下往上高斯消元(高位放下面),如果该行有未被控制的变元,则该行的结果一定为1,且该变元控制该行。
3. 从该行往上依次消掉(异或)该变元。
4. 如果该行没有可以用来控制的变元,如果最后一列是0,则该行结果也为1,否则该行结果为0。这里能抱着已用来控制的变元的系数全是0,因为在第3步时就消掉该行以上此列的0了,后面0与0以后还是0。所以如果最后一列是0, 即该行方程也可以成立,故结果为1。

建立方程:

a11x1+a21x2……=d[1]

a12x1+a22x2……=d[2]

。。。

还有一个写的比较好的博客:http://blog.csdn.net/ivan_zjj/article/details/7629055

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define LL __int64
const int maxn = +;
using namespace std;
int a[maxn][maxn], vis[maxn];
LL b[maxn]; int main()
{
LL ans, x;
int n, i, j, k;
b[] = ;
for(i = ; i < ; i++)
b[i] = *b[i-];
while(~scanf("%d", &n))
{
ans = ;
memset(vis, , sizeof(vis));
for(i = ; i < n; i++)
{
scanf("%I64d", &x);
for(j = ; j < ; j++)
if(x & b[-j])
a[j][i] = ;
else
a[j][i] = ;
}
for(i = ; i < ; i++)
a[i][n] = ;
for(i = ; i < ; i++)
{
int tmp = -;
for(j = ; j < n; j++)
if(a[i][j] && !vis[j])
{
tmp = j;
break;
}
if(tmp==- && a[i][n]==)
ans += b[-i];
else if(tmp!=-)
{
ans += b[-i];
for(k = i+; k < ; k++)
if(a[k][tmp])
{
for(j = ; j <= n; j++)
a[k][j] ^= a[i][j];
}
}
}
printf("%I64d\n", ans);
}
return ;
}

SGU 275 To xor or not to xor (高斯消元)的更多相关文章

  1. 【HDU 3949】 XOR (线性基,高斯消元)

    XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. [HNOI2011]XOR和路径 概率期望 高斯消元

    题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xo ...

  3. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  4. ACM学习历程—SGU 275 To xor or not to xor(xor高斯消元)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和 ...

  5. SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax

    275. To xor or not to xor   The sequence of non-negative integers A1, A2, ..., AN is given. You are ...

  6. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  7. 2015南阳CCPC E - Ba Gua Zhen 高斯消元 xor最大

    Ba Gua Zhen Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 无 Description During the Three-Kingdom perio ...

  8. 关于高斯消元解决xor问题的总结

    我觉得xor这东西特别神奇,最神奇的就是这个性质了 A xor B xor B=A 这样就根本不用在意重复之类的问题了 关于xor的问题大家可以去膜拜莫队的<高斯消元解XOR方程组>,里面 ...

  9. bzoj 2115: [Wc2011] Xor xor高斯消元

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] ...

  10. hdu3949 XOR xor高斯消元

    XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. UpdateData(false) and UpdateData(true)

    数据更新函数: UpdateData(false); 控件的关联变量的值传给控件并改变控件状态(程序--->EXE) UpdateData(true); 控件的状态传给其关联的变量(EXE--- ...

  2. linux作业六——进程的描述和进程的创建

    进程的描述和进程的创建 一.进程描述符task_struct 为了管理进程,内核必须对每个进程进行清晰的描述,进程描述符提供了内核所需了解的进程信息. 代码关键点: 1.Struct list_hea ...

  3. eclipse不能创建java虚拟机-解决方法

    找到eclipse目录下的eclipse.ini,可以看到如下内容: -startup plugins/org.eclipse.equinox.launcher_1.1.0.v20100507.jar ...

  4. MVC与WebForm的一些区别

    MVC与WebForm的一些区别 它们都是ASP.NET WEB开发的两种方式 .但是他们也是有一些不同.做个小结. 1.MVC是没有服务器端控件这么一说的,也就是没有viewstate,也就不会产生 ...

  5. [Android] ImageView.ScaleType设置图解 【转载】

    ImageView的Scaletype决定了图片在View上显示时的样子,如进行何种比例的缩放,及显示图片的整体还是部分,等等. 设置的方式包括: 1. 在layout xml中定义android:s ...

  6. 使用Putty连接VirtualBox的Ubuntu

    从vbox中安装了ubuntu server,然后用ssh连过去,发现有一个错误:server unexpectedly closed network connection.猛然发现,ssh没有安装. ...

  7. MyEclipse 2015 Stable 1.0下载安装破解日志

    前言 这2天下载了许多myeclipse版本,基本上是14/15版本的,各种破解均告以失败,这次下载了贴吧一个吧友提供的版本,现已破解.破解结果现不好说--目前已装SVN,根据经验,只有等待一定时间验 ...

  8. 2013 Asia Hangzhou Regional Contest

    Lights Against Dudely http://acm.hdu.edu.cn/showproblem.php?pid=4770 15个位置,所以可以暴力枚举那些放,对于放的再暴力枚举哪个转, ...

  9. ZendStudio中设置SVN:ignore

    使用ZendStudio开发SVN中的代码时,经常容易将 .project..settings..buildpath 这类的zend的工程文件提交上去,非常麻烦,有几种方法可以去掉这个麻烦. 1.在Z ...

  10. 关于nginx限制IP或IP段的问题2011

    关于nginx限制IP或IP段的问题2011-04-08 16:46:39 分类: LINUX 最近有同事问需要在nginx中针对一些IP和IP段限制访问,通过了解以下方法可以解决问题:   首先建立 ...