UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n)
此题和UVA 11426 一样,不过n的范围只有20000,但是最多有20000组数据。 当初我直接照搬UVA11426,结果超时,因为没有预处理所有的结果(那题n最多4000005,但最多只有100组数据),该题数据太多了额。。。
思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+gcd(n-1,n),则所求结果ans(n)=sum(2)+sum(3)+...+sum(n)
只需求出sum(n),就可以推出所有答案:ans(n)=ans(n-1)+sum(n)(我当时怎么就没想到呢,额。。。)。
接下来重点就是求sum(n):
注意到所有gcd(x,n)都是n的约数,可以按照这个约数进行分类,用g(n,i)表示满足g(x,n)=i且x<n的正整数个数,
则sum(n)=sum{i*g(n,i)|i是n的约数}。注意到gcd(x,n)=i的充要条件是gcd(x/i,n/i)=1
(额,我是看到书上的这个提示,才想到怎么做的。。。),因此满足条件的x/i有phi(n/i)个(欧拉函数),说明g(n,i)=phi(n/i)。
由于时间限制,同素数筛选法,我们需要对于每个i枚举它的倍数n并更新sum(n),这些都在预处理中完成。
#include <iostream>
#include <stdio.h>
#include <string.h>
/*
数论题 题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+gcd(n-1,n),则所求结果ans(n)=f(2)+f(3)+...+f(n)
只需求出f(n),就可以推出所有答案:ans(n)=ans(n-1)+sum(n)(我当时怎么就没想到呢,额。。。)。
接下来重点就是求sum(n):
注意到所有gcd(x,n)都是n的约数,可以按照这个约数进行分类,用g(n,i)表示满足g(x,n)=i且x<n的正整数个数,
则sum(n)=sum{i*g(n,i)|i是n的约数}。注意到gcd(x,n)=i的充要条件是gcd(x/i,n/i)=1
(额,我是看到书上的这个提示,才想到怎么做的。。。),因此满足条件的x/i有phi(n/i)个(欧拉函数),说明g(n,i)=phi(n/i)。
由于时间限制,同素数筛选法,我们需要对于每个i枚举它的倍数n并更新sum(n),这些都在预处理中完成。
*/
using namespace std;
const int maxn=;
int phi[maxn];
long long sum[maxn];
long long ans[maxn];
void init(){
memset(phi,,sizeof(phi));
memset(sum,,sizeof(sum));
memset(ans,,sizeof(ans));
phi[]=;
for(int i=;i<maxn;i++){
if(!phi[i]){
for(int j=i;j<maxn;j+=i){
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
long long i,j;
for(i=;i<maxn;i++){
for(j=;i*j<maxn;j++){
/*
//原来第二次循环j是从1~maxn,循环中加个if条件,预处理都运行很慢很慢,超时
if(i*j>=maxn)
continue;
*/
sum[i*j]+=phi[i]*j; //n=i*j,j为n和x的公约数,类似于素数筛选法
}
}
/*
//白书上的代码 for(int i=1;i<maxn;i++){
for(int n=i*2;n<maxn;n+=i)
sum[n]+=i*phi[n/i];
}
*/
ans[]=sum[];
for(int i=;i<maxn;i++){
ans[i]=ans[i-]+sum[i]; //怎么都忘记可以利用前一项的结果啊!!!
}
}
int main()
{
init();
int n;
long long result;
while(scanf("%d",&n),n){
printf("%lld\n",ans[n]); //UVA上,注意是lld }
return ;
}
UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)的更多相关文章
- UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...
- UVA 11426 GCD - Extreme (II) 欧拉函数
分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...
- UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)
Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- UVA 11426 - GCD - Extreme (II) 欧拉函数-数学
Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- UVA11426 GCD - Extreme (II)---欧拉函数的运用
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- GCD - Extreme(欧拉函数变形)
题目链接:https://vjudge.net/problem/UVA-11426 题目大意: 给出整数n∈[2,4000000],求解∑gcd(i,j),其中(i,j)满足1≤i<j≤n. 的 ...
- UVA11426 GCD - Extreme (II) —— 欧拉函数
题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...
随机推荐
- Cstring使用说明
CString::Left(intnCount)const; //从左边1开始获取前 nCount个字符 CString::Mid(intnFirst)const; //从左边第 nCount+1个字 ...
- Use XSLT in wix
Following content is directly reprinted from https://installpac.wordpress.com/2012/05/07/conflict-ma ...
- 利用Nutch和Tomcat构建搜索引擎
利用Nutch和Tomcat构建搜索引擎 1.安装环境及软件版本介绍 本教程是在Linux Ubuntu 12.04 desktop i386操作系统上搭建,结合使用了Nutch-1.2和Apache ...
- 【笔记】Windows Phone 8开发笔记之API
Windows Phone 8 API一览 Windows Phone 7平台不支持Native语言的开发,这困扰了许多游戏和底层应用的开发者.Windows Phone 8 SDK的推出,改善了这个 ...
- shell脚本初识
#!/bin/bash(linux脚本环境的声明即解释器,该解释器为bash,位于根目录下的bin目录下) 变量的定义与赋值: 格式:变量名=变量值(无需声明变量类型) 变量的引用: 格式:$变量名 ...
- 浅析php fwrite写入txt文件的时候用 \r\n不能换行的问题
以下是对php中fwrite写入txt文件的时候用 \r\n不能换行的问题进行了介绍,需要的朋友可以过来参考下今天遇到了一个问题就是用fwrite写入txt文件的时候用 rn不能换行试了很久都没找到办 ...
- Firebird数据库相关备忘录
Firebird数据库中有一些很特别的东西,很好用,但由于平时用的不多,记在这里,以备以后用到时查询. 1.以ADO 的OLE ODBC驱动方式访问 Firebird,可以使用如下连接串: FBCon ...
- c语言知识点总结(摘自head first c)
gcc name.c -o name; ./name或者gcc name.c -o name && ./name;同时执行关键字:void sizeof(运算符,它能告诉你某样东 ...
- Hadoop管理员的十个最佳实践(转)
前言 接触Hadoop有两年的时间了,期间遇到很多的问题,既有经典的NameNode和JobTracker内存溢出故障,也有HDFS存储小文件问题,既有任务调度问题,也有MapReduce性能问题.遇 ...
- Linux 挂载存储方法
申请的虚拟机因总宕机,处理完之后多分配了我100G空间,还是狠讲究的嘛,挂载方法如下: 初始磁盘挂载情况:[root@wmstest ~]# df -hFilesystem Size Used Ava ...