UVA 11478 Halum(用bellman-ford解差分约束)
对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d。现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小边权的最大值。
不得不说,图论与动态规划的产物实在是神奇!!
1、既然是“最小值最大”问题,容易想到二分答案。
2、抽象出数学模型。这个在《训练指南》里写得已经很详细,鄙人还是以自己的理解表达一下。
这里有两处特别值得学习的地方。一、叠加:假设每个点都对应着一个(v,d)操作,那么对于边u->v来说,受到两个端点的影响,最终的权值为(c+du-dv)。二、抽象:这个没学过差分约束真心想不到。之前想到了二分答案,那么我们假设最终的“最小值最大”为x,那么所有边满足(c+du-dv)>=x,变形后(dv-du)<=(c-x)。由于是第一次做这种类型的题,无法妄下结论,但书上所说到的“最短路中的不等式d[v]<=d[u]+w(u,v)”,很明显,我们常用的的不等式是d[v]>=d[u]+w(u,v)。所以,这里先记住这个模型:形如xj-xi
<=b,建边i->j,边权为b。(提出疑问:若得到的模型为xi-xj>=b,变形后xj-xi<=-b => 建边i->j,边权为-b)。
至于书上说的"加源点s",完全不知为何物= =。不过不妨碍我们做题。由于采用二分答案,边权c是变值,处理方式很直白的把所有的边-x,判完负环再做+x就好了。
为何判负环就可行呢?我们通过二分答案,改变b的值,每次都得到了一个的形如xj-xi<=b的不等式组,当不等式组不成立即说明当前二分的值不成立。举个例子:有个环1->2,2->3,3->1,对应的不等式x2-x1<=ca,x3-x2<=cb,x1-x3<=cc,若这是个负环,说明等式右侧(ca+cb+cc)<0,而等式左侧=0,为恒不等式。所以一旦存在负环,不等式组不成立,差分约束系统无解。
注意:
1、先做完特判,再处理其他数据,这点是通用的。(我一开始把判“No Solution”放在二分后面了,TLE。当然现在也不过是飘过时限= =)
判“Inf”,无环,就不会在同一个圈中两两影响。判“No”要用1而不能是0,因为最后求得是正数。
2、二分写得时候要注意,要绝对防止 l,r 在相邻两个数之间不变。e.g:第三组样例,l=3,r=4,x作为中间值,当x==3,成立=>l=x;当x==4,不成立=>r=x。死循环了(偶真是弱爆了,明明很简单的问题还要想半天)
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define clr(a,m) memset(a,m,sizeof(a))
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std; const int MAXN=;
const int INF =1e8; struct Edge{
int u,v,c;
}; int inq[MAXN],cnt[MAXN],d[MAXN];
vector<Edge>edge;
vector<int>G[MAXN]; void init(int n)
{
edge.clear();
rep(i,,n)
G[i].clear();
} void add(int u,int v,int c)
{
edge.push_back((Edge){u,v,c});
int m=edge.size();
G[u].push_back(m-);
} double build(int m)
{
int u,v;
int c,up=;
rep(i,,m){
scanf("%d%d%d",&u,&v,&c);
up=max(up,c);
add(u,v,c);
}
return up;
} bool BF(int st,int n)
{
clr(inq,);
clr(cnt,);
queue<int>q;
rep(i,,n){
if(i==st)d[i]=;
else d[i]=INF;
q.push(i);
}
while(!q.empty())
{
int u=q.front();q.pop();
inq[u]=false;
int sz=G[u].size();
rep(i,,sz-){
Edge e=edge[G[u][i]];
if(d[e.v]>d[u]+e.c){
d[e.v]=d[u]+e.c;
if(!inq[e.v]){
q.push(e.v);
inq[e.v]=true;
if(++cnt[e.v]>n)
return true;
}
}
}
}
return false;
} bool test(int n,int m,int x)
{
rep(i,,m-)
edge[i].c-=x;
bool flog=BF(,n);
rep(i,,m-)
edge[i].c+=x;
return flog;
} int main()
{
int T,n,m;
while(~scanf("%d%d",&n,&m))
{
init(n);
int up=build(m); if(!test(n,m,up+))
printf("Infinite\n");
else if(test(n,m,))
printf("No Solution\n");
else{
int l=,r=up;
while(l<r)
{
int x=l+(r-l+)/;
if(test(n,m,x))
r=x-;
else
l=x;
}
printf("%d\n",l);
}
}
return ;
}
后记:
1、书上所说“最短路中的不等式d[v]<=d[u]+w(u,v)”指的是最短路的关系式,而不是松弛操作。表示从起点s->v的最短路恒<=s->u的最短路+w(u,v)。
2、根据不等式的变形,的确可以自由选择使用最长路还是最短路求解,但两种方法所得的答案不同,具体解释http://www.cnblogs.com/zstu-abc/p/3277305.html
UVA 11478 Halum(用bellman-ford解差分约束)的更多相关文章
- 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)
layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...
- 【UVA11478】Halum (最短路解差分约束)
题目: Sample Input2 11 2 102 11 2 -103 31 2 42 3 23 1 54 52 3 44 2 53 4 23 1 01 2 -1Sample OutputInfin ...
- UVA - 11478 - Halum(二分+差分约束系统)
Problem UVA - 11478 - Halum Time Limit: 3000 mSec Problem Description You are given a directed grap ...
- UVA 11478 Halum
Halum Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: 114 ...
- UVA 11478 Halum (差分约束)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVA 11478 Halum(差分约束)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 [思路] 差分约束系统. 设结点u上的操作和为sum[u] ...
- UVA - 11478 Halum 二分+差分约束
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 题意: 给定一个有向图,每一条边都有一个权值,每次你可以 ...
- Uva 11478 Halum操作
题目链接:http://vjudge.net/contest/143318#problem/B 题意:给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权 ...
- 【POJ1021】Intervals (最短路解差分约束)
题目: Sample Input 5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1 Sample Output 6 题意: 我们选数,每个数只能选一次.给定n个条件[ai,bi]和 ...
随机推荐
- EXT4.2--Ext Designer 使用
前言: “画EXT”是一个美好的想法,如果有一款可视化工具能够只需进行拖拽而设计EXT,生成代码--那真是一件美丽的事.然而现实是,即使是为Eclipse装上EXT插件,用上idea,手写代码的提示也 ...
- 剑指offer--面试题10
题目:求整数二进制表示中1的个数. 分析:此题直接考查二进制表示与位运算!!! 正数和负数的二进制表示不同!在计算机中,正数的二进制表示即为通常所写的二进制:而负数的二进制表示则用补码表示,即原码的反 ...
- jsp的<%@ include file="jsp/common.jsp" %>报错误Duplicate local variable basePath
将公共引入的文件放到common.jsp中,其他页面引入该jsp即可使用 <%@ page language="java" import="java.util.*& ...
- SQLite 学习流水账笔记
1.SQLite随机取n行数据,可加自己的条件 SELECT * FROM TableName WHERE key ? ORDER BY RANDOM() LIMIT ,Num; 2.sql语句中查询 ...
- 原 Linux搭建SVN 服务器
原 Linux搭建SVN 服务器 发表于1年前(2014-08-05 17:55) 阅读(12257) | 评论(3) 31人收藏此文章, 我要收藏 赞3 摘要 Linux搭建SVN 服务器 目录 ...
- C语言关键字register、extern、static
C语言中: 一.register变量 关键字regiter请求编译器尽可能的将变量存在CPU的寄存器中.有以下几点注意的地方. register变量必须是能被CPU寄存器所接受的类型,这通常意味着re ...
- Oracle调优总结(经典实践 重要)
转载:http://langgufu.iteye.com/blog/1974211 Problem Description:1.每个表的结构及主键索引情况2.每个表的count(*)记录是多少3.对于 ...
- 学习笔记--Git安装 创建版本库 图文详解
一.Git下载 在Windows上安装git,一般为msysgit,官网地址:http://git-scm.com/ 我下载的是Git-1.9.2-preview20140411.exe 二.Git安 ...
- C# 面向对象之概念理解(3)
多态 多态是指两个或多个属于不同类的对象,对同一个消息(方法调用)做出不同响应的能力. 多态(<韦氏大词典>)中定义:可以呈现不同形式的能力或状态. C#如何实现多态的知识——即继承上覆载 ...
- java基础知识回顾之javaIO类--File类应用:删除带内容的目录
/** * 深度删除一个带内容的目录 * 原理:必须从里往外删除,需要深度遍历 * @author Administrator * */ public class FileDeleteList { / ...