观察这道题,d(a,b) 就是先变成最大公约数然后再变成b

设g[x]表示x的质因数数目,不难得到d(a,b)=g[a/gcd(a,b)]+g[b/gcd(a,b)]

因为g[xy]=g[x]+g[y] 所以d(a,b)=g[a/gcd(a,b)]+g[b/gcd(a,b)]=g[a]+g[b]-2*g[gcd(a,b)]

g[]很明显可以用线性筛搞出来,下面考虑如何解决询问

我们发现从穷举是序列中哪个数来考虑,是无法优化的

考虑穷举约数(穷举约数是根号的复杂度,这是一个非常经典的转化)

设f[x]表示在序列中是x倍数的元素g[]最小且编号尽量小的

因为对于每个i,j不等于i,所以我们还要维护一个次优值

这一步我们可以O(n√a)的复杂度

然后我们对于每个元素,我们只要穷举约数,在这个约数是最大公约数的情况下的最优值即可

有人说,如果记录的f[x]的元素和当前询问元素的最大公约数是x的倍数而不是x怎么办

丝毫不影响,因为d(a,b)=g[a]+g[b]-2*g[gcd(a,b)],g[ax]>=g[x] a是正整数

如果这个更新了,那到后面那个最大公约数时肯定会被再更新

 const inf=;
var f,w:array[..,..] of longint;
p,a,g:array[..] of longint;
k,mx,i,t,n,j,ans:longint; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; function cmp(a1,b1,a2,b2:longint):boolean;
begin
if a1=a2 then exit(b1<b2);
exit(a1<a2);
end; procedure work(x,i:longint);
begin
if cmp(g[a[i]],i,f[x,],w[x,]) then
begin
f[x,]:=f[x,];
w[x,]:=w[x,];
f[x,]:=g[a[i]];
w[x,]:=i;
end
else if cmp(g[a[i]],i,f[x,],w[x,]) then
begin
f[x,]:=g[a[i]];
w[x,]:=i;
end;
end; procedure get(x,i:longint);
begin
if w[x,]=i then
begin
if w[x,]= then exit;
if cmp(f[x,]-*g[x],w[x,],ans,k) then
begin
ans:=f[x,]-*g[x];
k:=w[x,];
end;
end
else if cmp(f[x,]-*g[x],w[x,],ans,k) then
begin
ans:=f[x,]-*g[x];
k:=w[x,];
end;
end; begin
readln(n);
for i:= to n do
begin
read(a[i]);
if mx<a[i] then mx:=a[i];
end;
g[]:=;
for i:= to mx do
begin
if g[i]= then
begin
g[i]:=;
inc(t);
p[t]:=i;
end;
for j:= to t do
begin
if i*p[j]>mx then break;
g[i*p[j]]:=g[i]+;
if i mod p[j]= then break;
end;
end;
for i:= to mx do
begin
f[i,]:=inf;
f[i,]:=inf;
end;
for i:= to n do
for j:= to trunc(sqrt(a[i])) do
if a[i] mod j= then
begin
work(j,i);
if j*j<>a[i] then work(a[i] div j,i);
end; for i:= to n do
begin
ans:=inf;
k:=;
for j:= to trunc(sqrt(a[i])) do
if a[i] mod j= then
begin
get(j,i);
if j*j<>a[i] then get(a[i] div j,i);
end;
writeln(k);
end;
end.

bzoj2790的更多相关文章

  1. 【BZOJ2790】[Poi2012]Distance 筛素数+调和级数

    [BZOJ2790][Poi2012]Distance Description 对于两个正整数a.b,这样定义函数d(a,b):每次操作可以选择一个质数p,将a变成a*p或a/p, 如果选择变成a/p ...

  2. [BZOJ2790][Poi2012]Distance

    2790: [Poi2012]Distance Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 225  Solved: 115[Submit][Sta ...

  3. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

随机推荐

  1. kali linux安装vm

    https://download3.vmware.com/software/wkst/file/VMware-Workstation-Full-10.0.2-1744117.i386.bundle v ...

  2. MAC 13信道

    房东的路由器一直连不上,手机却能连上,前天设置了13信道,后来又忘了,最后找到个连接WIFI的方法,在网络偏好设置里选择向导,诊断中可以连上wifi.

  3. 虚拟机移动后重启网络时提示Device does not seem to be present

    Wmware虚拟机硬盘文件位置移动之后,重新引入到Wmware workStation中, 通过命令ifconfig...没有看到eth0..然后重启网卡 #service network resta ...

  4. find查找指定类型文件并删除

            问题描述:                      查找当前目录下指定类型的文件              问题解决:                     (1)find命令   ...

  5. 平常写css网页制作时最实用的九条CSS技巧

    一.使用css缩写 使用缩写可以帮助减少你CSS文件的大小,更加容易阅读.css缩写的主要规则请参看<css基本语法>. 二.明确定义单位,除非值为0 忘记定义尺寸的单位是CSS新手普遍的 ...

  6. mybatis集成spring的事务管理

    第一 创建一个测试实体 public class Order { private int id; private String orderName; public Order(String order ...

  7. CentOS 6.4 搭建SVN服务器

    SVN作为新一代代码版本管理工具,有很多优点,管理方便,逻辑明确,安全性高,代码一致性高.SVN数据存储有两种方式,BDB(事务安全表类型)和FSFS(一种不需要数据库的存储系统),为了避免在服务器连 ...

  8. Javascript通过className选择元素

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  9. java基础知识回顾之---java String final类普通方法的应用之“模拟字符串Trim方法”

    /* * 4,模拟一个trim功能一致的方法.去除字符串两端的空白  * 思路: * 1,定义两个变量. * 一个变量作为从头开始判断字符串空格的角标.不断++. * 一个变量作为从尾开始判断字符串空 ...

  10. hdu 4447 Yuanfang, What Do You Think?

    思路: 这题有个结论也可以自己归纳: 对于给定的n,其约数用pi表示 T(n)=T(p1)T(p2)……T(pn)T(n') 其中T(n')是这个式子所独有的也就是 T(n')=(x^n-1)/T(p ...