Strange Way to Express Integers
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 10907   Accepted: 3336

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31
 
中国剩余定理、
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
#define ll long long
#define N 10010 ll exgcd(ll a,ll b,ll& x, ll& y)
{
if(b==)
{
x=;
y=;
return a;
}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
bool solve(ll &m0,ll &a0,ll m,ll a)
{
ll y,x;
ll g=exgcd(m0,m,x,y);
if((a-a0)%g) return ;
x*=(a-a0)/g;
x%=m/g;
a0=(x*m0+a0);
m0*=m/g;
a0%=m0;
if(a0<) a0+=m0;
return ;
}
bool MLES(ll m[],ll r[],ll &m0 ,ll &a0,ll n)
{
m0=;
a0=;
bool flag=;
for(ll i=;i<n;i++)
{
if(!solve(m0,a0,m[i],r[i]))
{
flag=;
break;
}
}
return flag;
}
int main()
{
ll n;
ll m[N],r[N];
while(scanf("%lld",&n)!=EOF)
{
for(ll i=;i<n;i++)
{
scanf("%lld%lld",&m[i],&r[i]);
}
ll m0,a0;
ll flag=MLES(m,r,m0,a0,n);
if(flag) printf("%lld\n",a0);
else printf("-1\n");
}
return ;
}

[POJ 2891] Strange Way to Express Integers的更多相关文章

  1. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  2. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  3. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  4. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  5. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  6. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

  7. [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)

    题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...

  8. POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】

    求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...

  9. POJ 2891 Strange Way to Express Integers(中国剩余定理)

    题目链接 虽然我不懂... #include <cstdio> #include <cstring> #include <map> #include <cma ...

随机推荐

  1. dapper 自定义数据库字段和代码中Model字段不一致时候的mapping方法

    namespace YourNamespace { /// <summary> /// Uses the Name value of the ColumnAttribute specifi ...

  2. 编译Linux系统下的jrtplib3.9和jthread1.3(arm和ubuntu)

    最近由于学习需要,需要编译jrtplib,网上的资料基本上都是关于3.9以前的版本,而以前的版本基本上都是通过confiugre来配置生成Makefile,而最近的版本却没有这一项,而是使用cmake ...

  3. (转)《深入理解java虚拟机》学习笔记1——Java内存结构

    java虚拟机规范规定的java虚拟机内存其实就是java虚拟机运行时数据区,其架构如下: 其中方法区和堆是由所有线程共享的数据区. Java虚拟机栈,本地方法栈和程序计数器是线程隔离的数据区. (1 ...

  4. 灵光乍现,lua数据绑定

    MVVM的核心就是数据驱动,数据驱动的核心就是数据绑定. 我一直在思考,如何使用lua做一个数据绑定的功能,仔细思考一下,数据绑定需要做到的功能很简单,就是当一个数据改变时,能主动回调一个或多个函数就 ...

  5. 浅淡Windows7 32位与64位/x86与x64的区别

    看到有很多会员问到底是选Windows7 x86,还是选x64.这里简单的谈一下这这两种系统的区别. 简单的说x86代表32位操作系统  x64代表64位操作系统. 简单的判断电脑是否支持64位操作系 ...

  6. python 读写INI配置文件

    # -*- coding: utf-8 -*-import ConfigParserimport os '''读写配置文件的类[section]logpath = D:\log\imageminsiz ...

  7. 【斜率DP】bzoj1597: [Usaco2008 Mar]土地购买

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2474  Solved: 900[Submit][ ...

  8. 团体程序设计天梯赛-练习集L2-008. 最长对称子串

    L2-008. 最长对称子串 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 对给定的字符串,本题要求你输出最长对称子串的长度. ...

  9. spoj 364

    动规  f[i][j]表示第i到第j个数能取到的最大值 e[i][j]表示最小值 ....... #include <cstdio> #include <cstring> us ...

  10. zoj 2387

    额  一个贪心  好难想到 ...... #include <cstring> #include <cstdio> #include <algorithm> #in ...