机器学习----分布问题(二元,多元变量分布,Beta,Dir)
这涉及到数学的概率问题。
二元变量分布:
伯努利分布,就是0-1分布(比如一次抛硬币,正面朝上概率)
那么一次抛硬币的概率分布如下:
假设训练数据如下:
那么根据最大似然估计(MLE),我们要求u:
求值推导过程如下:
所以可以求出:
以上的推导过程就是极大似然估计,我们可以看出u就是样本出现的频率除以总共抛硬币的实验次数。但是极大似然估计有它的局限性,当训练样本比较小的时候会导致Overfitting问题,比如说抛了10次硬币,有8次朝上,那么根据极大似然估计,u的
取值就应该是8/10(这符号频率派的观点)。如何解决这个问题呢?
那么这时候就需要从贝叶斯理论出发,贝叶斯理论认为,u并不是一个固定的值,u是同样服从某个分布,因此我们假设u有个先验分布P(u)。
但是如何选取这个先验分布p(u)呢?
我们知道
因此我们希望先验分布也可以有类似的概率分布,为什么这么说呢?因为后验概率=先验概率*似然函数,所以如果选择的先验分布和似然函数有一样的结构,那么得到的后验概率也会存在相似的结构,这样会使得我们后面的计算简便。
共轭性:θ的后验分布p(θ|x)与先验分布P(θ)属于同一分布,那么称二者为共轭分布。
因此我们假设u的先验分布也为
那么这时候数学里面有个分布叫做Beta分布:
那么假设我们投硬币,m次正面,l次反面。总共是m+l=N次实验:
那么这时候u的分布为:
依旧和先验分布服从一样的分布(共轭分布)
假设我们要预测下一次的实验结果,也就是给定D得到下一次的预测分布:
我们可以发现当m,N无限变大的时候,这种估计近似等于极大似然估计。
多元变量分布:
很多时候,变元的不止只有两个,还有多元,其实估计过程是类似的。 假设有k维向量,其中某个向量Xk=1,其他等于0。
例如某个变量x2发生,则X2=1,x=(0,1,0,0,0,0) 以抛筛子为例子,总共有6个面。
那么xk=1发生的概率为Uk,那么x的分布为:
考虑n个独立观测值{x1,x2,...xn}D,对应的似然函数:
其中mk其实就是这么多次实验中,uk出现的次数大小。估计极大似然估计,我们会得出:
同理,为了避免数据量小导致的过拟合问题,我们对Uk也假设一个先验分布:
考虑到对于多元变量的分布u:
因此我们选择它的共轭分布狄利克雷分布为先验分布:
那么后验分布=似然分布*先验分布:
依旧和先验分布服从一样的分布(共轭分布)
假设我们要预测下一次的实验结果,也就是给定D得到下一次的预测分布:
又因为对于狄利克雷分布:
所以对于某个类的分布预测为:
机器学习----分布问题(二元,多元变量分布,Beta,Dir)的更多相关文章
- 分布问题(二元,多元变量分布,Beta,Dir)
这涉及到数学的概率问题. 二元变量分布: 伯努利分布,就是0-1分布(比如一次抛硬币,正面朝上概率) 那么一次抛硬币的概率分布如下: 假设训练数据如下: 那么根据最大似然估计(MLE),我 ...
- 伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli tri ...
- 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系
在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...
- 【联系】—— Beta 分布与二项分布、共轭分布
1. 伯努利分布与二项分布 伯努利分布:Bern(x|μ)=μx(1−μ)1−x,随机变量 x 取值为 0,1,μ 表示取值为 1 的概率: 二项分布:Bin(m|N,μ)=(Nm)μm(1−μ)N− ...
- 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...
- Memcached 笔记与总结(5)Memcached 的普通哈希分布和一致性哈希分布
普通 Hash 分布算法的 PHP 实现 首先假设有 2 台服务器:127.0.0.1:11211 和 192.168.186.129:11211 当存储的 key 经过对 2 (2 台服务器)取模运 ...
- Pytorch的默认初始化分布 nn.Embedding.weight初始化分布
一.nn.Embedding.weight初始化分布 nn.Embedding.weight随机初始化方式是标准正态分布 ,即均值$\mu=0$,方差$\sigma=1$的正态分布. 论据1——查看 ...
- 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)
面积与房价 训练集 (Training Set) Size Price 2104 460 852 178 ...... m代表训练集中实例的数量x代表输入变量 ...
- 机器学习-线性回归算法(单变量)Linear Regression with One Variable
1 线性回归算法 http://www.cnblogs.com/wangxin37/p/8297988.html 回归一词指的是,我们根据之前的数据预测出一个准确的输出值,对于这个例子就是价格,回归= ...
随机推荐
- CentOS7 升级python同时解决yum损坏问题
CentOS7中的python版本为python2.7.5,升级到最新版的python时需要注意两个问题 新版的python安装好后要修改python的系统默认指向问题 升级到最新版python后yu ...
- YASKAWA电机控制(1)---接线
实验室所购置电机型号为YASKAWA-AC SERVO MOTOR SGM7J-01AFC6S型,配SGD7S-R90A00A002伺服控制器.电机和控制器的操作说明书由安川中文官网安川电机资料提供. ...
- struts2更新版本操作有关事项备注
struts2更新版本操作有关事项备注, 更新主要jar包:struts2-convention-plugin-version,struts2-core-version, struts2-spring ...
- C# DataGridView控件 动态添加新行
DataGridView控件在实际应用中非常实用,特别需要表格显示数据时.可以静态绑定数据源,这样就自动为DataGridView控件添加相应的行.假如需要动态为DataGridView控件添加新行, ...
- [51NOD1126]求递推序列的第n项(矩阵快速幂)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1126 存在参数a,b为负数的情况.这时候要这么处理: 根据mo ...
- Android ContentProvider和Uri详解 (绝对全面)
ContentProvider的基本概念 : 1.ContentProvider为存储和读取数据提供了统一的接口 2.使用ContentProvider,应用程序可以实现数据共享 3.andr ...
- Test语言编译器V0.8
感觉这个挺好耍的,书上的代码有错误,而且功能有限. 一.词法分析 特点: (1)可对中文进行识别:(2)暂不支持负数,可以在读入‘-'时进行简单标记后就能对简单负数进行识别了. #include &l ...
- BZOJ 3527 力
fft推下公式.注意两点: (1)数组从0开始以避免出错. (2)i*i爆long long #include<iostream> #include<cstdio> #incl ...
- JS调用客户端EXE
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- I.MX6 默认打开 USB adb
/***************************************************************************** * I.MX6 默认打开 USB adb ...