先来简单介绍一下什么是文档倒排索引
倒排索引是文档检索系统中最常见的数据结构,被广泛应用在全文搜索引擎上。主要用来存储某个单词(或词组)在一个文档或者一组文档中的存储位置的映射,即提供了一种根据内容来查找文档的方式。
简单点来讲呢,就是根据内容找文章。
 
倒排索引的概念说明白了,就该说说怎么用MapReduce实现。
测试数据奉上:
file1:MapReduce is simple
file2:MapReduce is powerful is simple
file3:Hello MapReduce bye MapReduce 
输出的结果:
Hello    file3.txt:1;
MapReduce    file3.txt:2;file:2.txt:1;file1.txt:1;
bye    file"3.txt:1;
is    file2.txt:2;file1.txt:1; 
powerful    file2.txt:1;
simple    file2.txt:1;file1.txt:1;
 
设计思路
map、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
context.write("MapReduce:file1", 1)  context.write("is:file1", 1)  context.write("simple:file1", 1)  context.write("MapReduce :file2", 1)  context.write("is:file2", 1)  context.write("powerful :file2", 1) context.write("is:file2", 1) 
 
<"MapReduce:file1", {1}> <"is:file1", {1}> <"simple:file1", {1}>  <"simple:file1", {1}>  <"is:file2",  {1, 1}> ..........................
combine、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
context.write("MapReduce" , "file1:1") context.write("is" , "file1:1")  context.write("simple" , "file1:1")  context.write("MapReduce " , "file2:1")  context.write("is" , "file2:2")................................
<"MapReduce",{ "file1:1","file2:1"}>  <"is",{ "file1:1","file2:2"}>   <"simple",{ "file1:1"}> .......................
reduce、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
context.write("MapReduce","file1:1,file2:1")..................................
 
这个过程中的Combine是不可插拔的,也就是不可以省略的,因为它和Reduce的业务逻辑不一样。
 
代码奉上
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class InvertedIndex { public static class InvertedMap extends
Mapper<LongWritable, Text, Text, IntWritable> {
private Text kText = new Text();
private IntWritable vIntWritable = new IntWritable(1);
private FileSplit split; @Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] lineSplit = line.split("\t");
// 获取文档名称
split = (FileSplit) context.getInputSplit();
int indexOfFile = split.getPath().toString().indexOf("file");
String fileName = split.getPath().toString().substring(indexOfFile); for (int i = 0; i < lineSplit.length; i++) {
kText.set(lineSplit[i] + ":" + fileName);
context.write(kText, vIntWritable);
} } } public static class InvertedConbine extends
Reducer<Text, IntWritable, Text, Text> {
private Text kText = new Text();
private Text vText = new Text(); protected void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
// 词频统计
int sum = 0;
for (IntWritable v : values) {
sum += v.get();
}
int indexOf = key.toString().indexOf(":");
kText.set(key.toString().substring(0, indexOf));
vText.set(key.toString().substring(indexOf + 1) + ":" + sum);
context.write(kText, vText); } } public static class InvertedReduce extends Reducer<Text, Text, Text, Text> {
private Text vText = new Text(); protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
String filelist = new String();
for (Text v : values) {
filelist += v.toString() + ";";
}
vText.set(filelist);
context.write(key, vText);
} } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf); job.setJarByClass(InvertedIndex.class); job.setMapperClass(InvertedMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); job.setCombinerClass(InvertedConbine.class); job.setReducerClass(InvertedReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true)? 0:1);
} }
 

Hadoop-Map/Reduce实现实现倒排索引的更多相关文章

  1. Hadoop Map/Reduce教程

    原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 ...

  2. 一步一步跟我学习hadoop(5)----hadoop Map/Reduce教程(2)

    Map/Reduce用户界面 本节为用户採用框架要面对的各个环节提供了具体的描写叙述,旨在与帮助用户对实现.配置和调优进行具体的设置.然而,开发时候还是要相应着API进行相关操作. 首先我们须要了解M ...

  3. Hadoop Map/Reduce

    Hadoop Map/Reduce是一个使用简易的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集.一个Map/Reduce ...

  4. Hadoop Map/Reduce 示例程序WordCount

    #进入hadoop安装目录 cd /usr/local/hadoop #创建示例文件:input #在里面输入以下内容: #Hello world, Bye world! vim input #在hd ...

  5. Hadoop Map/Reduce的工作流

    问题描述 我们的数据分析平台是单一的Map/Reduce过程,由于半年来不断地增加需求,导致了问题已经不是那么地简单,特别是在Reduce阶段,一些大对象会常驻内存.因此越来越顶不住压力了,当前内存问 ...

  6. (转载)Hadoop map reduce 过程获取环境变量

    来源:http://www.linuxidc.com/Linux/2012-07/66337.htm   作者: lmc_wy Hadoop任务执行过程中,在每一个map节点或者reduce节点能获取 ...

  7. Hadoop map reduce 任务数量优化

    mapred.tasktracker.map.tasks.maximum 官方解释:The maximum number of map tasks that will be run  simultan ...

  8. hadoop2.2编程:自定义hadoop map/reduce输入文件切割InputFormat

    hadoop会对原始输入文件进行文件切割,然后把每个split传入mapper程序中进行处理,FileInputFormat是所有以文件作为数据源的InputFormat实现的基类,FileInput ...

  9. hadoop map reduce 实例wordcount的使用

    hadoop jar hadoop-mapreduce-examples-2.7.3.jar wordcount /wordcount.txt /wc/output3

  10. Hadoop学习:Map/Reduce初探与小Demo实现

    原文地址:https://blog.csdn.net/liyong199012/article/details/25423221 一.    概念知识介绍 Hadoop MapReduce是一个用于处 ...

随机推荐

  1. OpenCV源码阅读(3)---matx.h---学习心得

    在.h文件里定义类,可以通过内联函数的方法完成类基础函数的实现,这样就不需要额外写.cpp文件来写类的内容. 对于操作符重载,可以使用返回应用的方式减小内存开销 _Tp& someclass: ...

  2. 车牌识别LPR(八)-- 字符识别

    ​第八篇:字符识别 车牌定位.车牌倾斜校正.车牌字符分割都是为车牌字符识别做的前提工作,这些前提工作直接关系到车牌识别系统的性能.车牌字符识别是车牌识别系统的核心部分,车牌字符识别的准确率是衡量车牌识 ...

  3. Control Flow in Async Programs

    Control Flow in Async Programs You can write and maintain asynchronous programs more easily by using ...

  4. Windows JAVA 环境配置

    Java SE Development Kit Downloads http://www.oracle.com/technetwork/java/javase/overview/index.html ...

  5. oj放苹果

    题目描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. 输入 每个用例包含二个整数M和N.0<=m< ...

  6. 使用ssh公钥密钥自动登陆linux服务器

    转自:http://7056824.blog.51cto.com/69854/403669 作为一名 linux 管理员,在多台 Linux 服务器上登陆进行远程操作是每天工作的一部分.但随着服务器的 ...

  7. Android安卓开发中图片缩放讲解

    安卓开发中应用到图片的处理时候,我们通常会怎么缩放操作呢,来看下面的两种做法: 方法1:按固定比例进行缩放 在开发一些软件,如新闻客户端,很多时候要显示图片的缩略图,由于手机屏幕限制,一般情况下,我们 ...

  8. Asp.Net连接Mysql报错Out of sync with server

    Asp.Net连接Mysql报错Out of sync with server 原因:程序引用的MySql.Data.dll版本高于服务器版本 解决:下载一个低版本的MySql.Data.dll,项目 ...

  9. RTP封装h264

    网络抽象层单元类型 (NALU): NALU头由一个字节组成,它的语法如下: +---------------+      |0|1|2|3|4|5|6|7|      +-+-+-+-+-+-+-+ ...

  10. MPI编程的常用接口速查

    获取当前时间 在插入MPI提供的头文件后,可以获得获取时间的函数. double MPI_Wtime(void) 取得当前时间, 计时的精度由 double MPI_Wtick(void) 取得作为对 ...