巧用 Docker 快速部署 GPU 环境
公众号关注 「开源Linux」
回复「学习」,有我为您特别筛选的学习资料~
在 Linux 服务器上使用 GPU 跑深度学习的模型很正常不过。如果我们想用 Docker 实现同样的需求,就需要做些额外的工作。本质上就是我们要在容器里能看到并且使用宿主机上的显卡。在这篇文章里我们就介绍一下 Docker 使用 GPU 的环境搭建。
Nvidia 驱动
某些命令以 Ubuntu 作为示例。首先宿主机上必现安装 Nvidia 驱动。
这里推荐从 Nvidia 官网下载脚本安装,安装和卸载都比较方便并且适用于任何 Linux 发行版,包括 CentOS,Ubuntu 等。NVIDIA Telsa GPU 的 Linux 驱动在安装过程中需要编译 kernel module,系统需提前安装 gcc 和编译 Linux Kernel Module 所依赖的包,例如 kernel-devel-$(uname -r)
等。
安装 gcc 和 kernel-dev
$ sudo apt install gcc kernel-dev -y
安装 Nvidia 驱动
访问 https://www.nvidia.com/Download/Find.aspx
选择对应操作系统和安装包,并单击 [SEARCH] 搜寻驱动,选择要下载的驱动版本
在宿主机上下载并执行对应版本安装脚本
$ wget https://www.nvidia.com/content/DriverDownload-March2009/confirmation.php?url=/tesla/450.80.02/NVIDIA-Linux-x86_64-450.80.02.run&lang=us&type=Tesla
$ chmod +x NVIDIA-Linux-x86_64-450.80.02.run && ./NVIDIA-Linux-x86_64-450.80.02.run
验证
使用 nvidia-smi
命令验证是否安装成功,如果输出类似下图则驱动安装成功。
CUDA 驱动
CUDA(Compute Unified Device Architecture)是显卡厂商 NVIDIA 推出的运算平台。CUDA
是一种由 NVIDIA 推出的通用并行计算架构,该架构使 GPU 能够解决复杂的计算问题。它包含了 CUDA 指令集架构(ISA)以及 GPU 内部的并行计算引擎。这里安装的方式和显卡驱动安装类似。
访问官网下载对应版本安装包,https://developer.nvidia.com/cuda-toolkit-archive
配置环境变量
$ echo 'export PATH=/usr/local/cuda/bin:$PATH' | sudo tee /etc/profile.d/cuda.sh
$ source /etc/profile
nvidia-docker2
Docker 的安装这里就不展开了,具体查看官方文档非常详细。
这里我们就直接介绍安装 nvidia-docker2.
既然叫 nvidia-docker2 就有 nvidia-docker1 就是它的 1.0 版本目前已经废弃了,所以注意不要装错。
这里先简单说一下 nvidia-docker2 的原理,nvidia-docker2 的依赖由下几部分组成.
libnvidia-container
nvidia-container-toolkit
nvidia-container-runtime
nvidia-container-runtime 是在 runc 基础上多实现了 nvidia-container-runime-hook (现在叫 nvidia-container-toolkit),该 hook 是在容器启动后(Namespace已创建完成),容器自定义命令(Entrypoint)启动前执行。当检测到 NVIDIA_VISIBLE_DEVICES 环境变量时,会调用 libnvidia-container 挂载 GPU Device 和 CUDA Driver。如果没有检测到 NVIDIA_VISIBLE_DEVICES 就会执行默认的 runc。
下面分两步安装
设置 repository 和 GPG key
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
安装
$ sudo apt-get update
$ sudo apt-get install -y nvidia-docker2
$ sudo systemctl restart docker
验证
执行以下命令:
$ docker run --rm --gpus all nvidia/cuda:10.2-base nvidia-smi
如果输出跟直接在宿主机上执行 nvidia-smi
一致则说明安装成功。如果跑的深度学习模型使用的是 tensorflow 可以在容器里执行:
import tensorflow as tf
tf.contrib.eager.num_gpus()
如果输出了宿主机上的 Nvidia 显卡数量,则模型能使用到显卡加速。如果使用的是 pytorch 可以在容器里执行:
import torch
torch.cuda.is_available()
如果输出 True 证明环境也成功了,可以使用显卡。
使用示例
使用所有显卡
$ docker run --rm --gpus all nvidia/cuda nvidia-smi
$ docker run --rm --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all nvidia/cuda nvidia-smi
指明使用哪几张卡
$ docker run --gpus '"device=1,2"' nvidia/cuda nvidia-smi
$ docker run --rm --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=1,2 nvidia/cuda nvidia-smi
到这里在 Docker 下使用 Nvidia 显卡加速计算的基础环境搭建就介绍完了。后续我们可以继续研究一下 K8S 下调度 GPU 的实现。
本文转载自:「lxkaka」,原文:https://lxkaka.wang/docker-nvidia/,版权归原作者所有。
关注「开源Linux」加星标,提升IT技能
巧用 Docker 快速部署 GPU 环境的更多相关文章
- 利用Docker快速部署Oracle环境
工作中需要频繁使用Oracle环境,但是每次搭建起来比较消耗时间,本想通过虚拟机模板的方式来快速安装oracle vm,但是每次改ip等环境也很耗时,因此想到docker中有没有已经做好的images ...
- 使用Docker快速部署Storm环境
Storm的部署虽然不是特别麻烦,但是在生产环境中,为了提高部署效率,方便管理维护,使用Docker来统一管理部署是一个不错的选择.下面是我开源的一个新的项目,一个配置好了storm与mono环境的D ...
- 私活利器,docker快速部署node.js应用
http://cnodejs.org/topic/53f494d9bbdaa79d519c9a4a 最近研究了几天docker的快速部署,感觉很有新意,非常轻量级和方便,打算在公司推广一下,解放运维, ...
- 使用Docker快速搭建ELK环境
今天由于Win系统的笔记本没带回家,其次Docker在非Linux系统下都需要安装额外的软件去镜像才行 所以感觉没有差别,先直接用Mac搭建一遍呢, 本篇部分命令和配置内容为摘抄 Mac下使用Dock ...
- 使用Docker快速部署ELK分析Nginx日志实践(二)
Kibana汉化使用中文界面实践 一.背景 笔者在上一篇文章使用Docker快速部署ELK分析Nginx日志实践当中有提到如何快速搭建ELK分析Nginx日志,但是这只是第一步,后面还有很多仪表盘需要 ...
- 使用Docker快速部署各类服务
使用Docker快速部署各类服务 一键安装Docker #Centos环境 wget -O- https://gitee.com/iubest/dinstall/raw/master/install. ...
- 利用Docker快速部署Mysql
写在前面 我又来更新了~~~,今天内容较少,主要是利用Docker快速部署Mysql和初始化数据 利用Docker下载Mysql 简洁明了,在命令提示符中输入 docker pull mysql:8. ...
- spring boot / cloud (十八) 使用docker快速搭建本地环境
spring boot / cloud (十八) 使用docker快速搭建本地环境 在平时的开发中工作中,环境的搭建其实一直都是一个很麻烦的事情 特别是现在,系统越来越复杂,所需要连接的一些中间件也越 ...
- 使用Docker快速部署ELK分析Nginx日志实践
原文:使用Docker快速部署ELK分析Nginx日志实践 一.背景 笔者所在项目组的项目由多个子项目所组成,每一个子项目都存在一定的日志,有时候想排查一些问题,需要到各个地方去查看,极为不方便,此前 ...
随机推荐
- javax.net.ssl.sslhandshakeException:sun.security.validator.validatorException:PKIX path buildind failed
前段时间开发的一个需求,需要通过图片URL获取图片的base64编码,测试的时候使用的是百度图片的url,测试没有问题,但是发布后测试时报如下错: javax.net.ssl.sslhandshake ...
- 为什么 Thread 类的 sleep()和 yield ()方法是静态的?
Thread 类的 sleep()和 yield()方法将在当前正在执行的线程上运行.所以在其他处于等待状态的线程上调用这些方法是没有意义的.这就是为什么这些方法是静态的.它们可以在当前正在执行的线程 ...
- prometheus-存储
采集到的样本以时间序列的方式保存在内存(TSDB 时序数据库)中,并定时保存到硬盘中 prometheus一般会保留15天 prometheus按照block块的方式来存储数据,每2小时为一个时间单位 ...
- C++面试问题汇总
作者:勿忘心安~~链接:https://www.nowcoder.com/discuss/197611来源:牛客网 1 C++基础: (1)多态是怎么样的?写个样例? https://www.cnbl ...
- 转载:C++快速排序
快速排序的基本实现 转载至:https://www.cnblogs.com/miracleswgm/p/9199124.html 快速排序算法是一种基于交换的高效的排序算法,它采用了分治法的思想: 1 ...
- 在java web工程中jsp页面中使用kindeditor
在这之前我们用Notepad++写过kindeditor 在Java web工程里也差不多 首先我们复制之前的thml代码粘贴到工程里 然后把样式也复制进去 然后就可以运行了
- idea中web项目的创建
在idea中创建web项目 1)创建一个普通的Java项目 2)右键项目选择ADD Framework Support 3)勾选JavaEE 4)添加jar包 点击Project Structure ...
- xacro 语法总结
xacro是为了解决在编写urdf文件过程中,出现的标签内容重复,但又不得不去写.一些值的计算有依赖的问题.为了和urdf文件区分,我们定义的模型文件名后缀为.xacro. 从功能的角度来说,xacr ...
- 一次关于关系抽取(RE)综述调研的交流心得
本文来自于一次交流的的记录,{}内的为个人体会. 基本概念 实事知识:实体-关系-实体的三元组.比如, 知识图谱:大量实时知识组织在一起,可以构建成知识图谱. 关系抽取:由于文本中蕴含大量事实知识,需 ...
- 国际化相对时间格式化API:Intl.RelativeTimeFormat
原文:The Intl.RelativeTimeFormat API 作者:Mathias Bynens(@mathias) 现代 Web 应用程序通常使用"昨天","4 ...