感觉博弈题都是高大上神秘结论。。。

感谢@KaiSuoShuTong 开锁疏通愿意教我这题的博弈部分/qq

考虑每次移动棋子,实际上是有一车 \(a_i\),每次操作相当于令 \(a_i-c,a_{i+1}+c\)。

考虑奇数位置上的 \(a_i\) 为 \(0\) 时的策略。我们发现如果此时先手走一步,后手也会跟着走一步同样的。所以此时偶数位置上的数为多少都无所谓。

考虑奇数位置上有值的情况。只要我成功将奇数位置上的数全部清空,那么我就胜利了。

然后变成了普通的 nim 游戏。

结论:是否获胜相当于对奇数上的位置做 nim 游戏。

nim 游戏的必输状态为异或起来全 \(0\)。(二进制下每一位之和为偶数)

正难则反,必输比必胜好考虑。我们考虑计算必输状态。

和 LGP2490 一样,考虑对奇数堆和偶数堆分别构造 GF。

下面设 \(b=\lfloor\frac{m}{2}\rfloor,a+b=m\)。

设奇数块的 GF \(F(x,y)\) 为:

\[F(x,y)=\prod_{i=0}\sum_{j=0}^1x^{j2^i}y_i^j
\]

偶数块和最后一段的 GF \(G(x)\) 为:

\[G(x)=\sum_{i=0}x^i=\frac{1}{1-x}
\]

有:

\[H(x,y)=x^{a+b}F^a(x,y)G^{b+1}(x)
\]

答案为:

\[ans=[x^n]\sum_{2|t_i}[\prod y_i^{t_i}]H(x,y)
\]

然后我们随便推一下:

\[F^a(x,y)=\prod_{i=0}\sum_{j=0}^ax^{j2^i}y_i^j
\]
\[H(x,y)=\frac{\prod_{i=0}\sum_{j=0}^a\binom{a}{j}x^{j2^i}y_i^j}{(1-x)^{b+1}}
\]
\[ans=[x^{n-m}]\sum_{2|t_i}[\prod y_i^{t_i}]H(x,y)
\]

考虑 \(F_k(x,y)=\prod_{i=0}^k\sum_{j=0}^a\binom{a}{j}x^{j2^i}y_i^j\),以及 \(dp[t][n]=[x^n]\sum_{2|t_i}[\prod y_i^{t_i}]F_{k-1}(x,y)\)。

转移是个卷积。

复杂度 \(O(nm\log n)\)。

#include<cstdio>
typedef unsigned ui;
const ui M=1.5e5+5,mod=1e9+9;
ui n,m,a,b,C[30],g[M],dp[19][M];
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
inline ui binom(const ui&n,const ui&m){
ui x(1),y(1),z(1);
for(ui i=1;i<=n;++i)x=1ull*x*i%mod;
for(ui i=1;i<=m;++i)y=1ull*y*i%mod;
for(ui i=1;i<=n-m;++i)z=1ull*z*i%mod;
return 1ull*x*pow(1ull*y*z%mod,mod-2)%mod;
}
signed main(){
ui lgn(0),ans(0);
g[0]=g[1]=1;C[0]=C[1]=1;dp[0][0]=1;
scanf("%u%u",&n,&m);b=m>>1;a=m-b;n-=m;
while((1<<lgn)<=n)++lgn;--lgn;
for(ui i=2;i<=a;++i)C[i]=1ull*(mod-mod/i)*C[mod%i]%mod;
for(ui i=1;i<=a;++i)C[i]=1ull*C[i]*C[i-1]%mod*(a-i+1)%mod;
for(ui i=2;i<=n;++i)g[i]=1ull*(mod-mod/i)*g[mod%i]%mod;
for(ui i=1;i<=n;++i)g[i]=1ull*g[i-1]*g[i]%mod*(b+i)%mod;
for(ui i=1;i<=lgn;++i){
for(ui j=0;j<=n;++j){
for(ui x=0;(x<<i-1)<=j&&x<=a;x+=2)dp[i][j]=(dp[i][j]+1ull*C[x]*dp[i-1][j-(x<<i-1)])%mod;
}
}
for(ui i=0;i<=n;++i)ans=(ans+1ull*dp[lgn][i]*g[n-i])%mod;
printf("%u",(mod+binom(n+m,m)-ans)%mod);
}

LGP5363题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. php导出excel xml word

    转载请注明来源:https://www.cnblogs.com/hookjc/ Excel: <?php header("Content-Type: application/vnd.m ...

  2. 通过ANT生成MANIFEST.MF中的Class-Path属性

    原文地址:http://reason2003.iteye.com/blog/1627353 之前做一个项目,主程序打包成一个jar文件,因为用到了很多第三方的lib包,所以直接通过java命令运行ja ...

  3. Java对数组的复制[转]

    原文地址http://x10232.iteye.com/blog/2230762 定义一个数组 int[] a={3,1,4,2,5}: int[] b=a: int[] a={3,1,4,2,5}: ...

  4. NSURL组成部分详解

    手思中有这么一段代码,初看下,让人摸不着头脑 //功能:UIWebView响应长按事件 -(BOOL)webView:(UIWebView *)webView shouldStartLoadWithR ...

  5. Linux小技巧scp命令

    Linux服务器运维小技巧scp命令详细教程. 前言 今天给大家带来的是linux中比较实用的命令scp.善用小技巧,解决工作中的痛点. 掌握一门好的技术或者说一门好的艺术,最快捷的方式就是融入到工作 ...

  6. 【Gym100837F】Controlled Tournament(状压Dp 搜索剪枝)

    题目链接 大意 现有\(N\)个人要打比赛,知道任意两个人间打比赛的胜负关系. 要求在 深度最小 的情况下,根为\(M\)的 竞赛树 的个数. 满足\(1\le M\le N\le 16\) 思路 虑 ...

  7. 11、Linux基础--sort、uniq、cut、tr、wc、流处理工具sed

    笔记 1.晨考 1.写出过滤手机号的正则表达式 1[0-9]{10} 2.写出过滤邮箱的正则表达式 chenyang@123.com [a-zA-Z0-9-_]+@[a-z0-9]+\.(com|cn ...

  8. Kinect v2 + WPF获取RGB与Depth图像

    date: 2017-09-04 14:51:07 Kinect V2的Depth传感器采用的是「Time of Flight(TOF)」的方式, 通过从投射的红外线反射后返回的时间来取得Depth信 ...

  9. Solution -「UOJ #87」mx 的仙人掌

    \(\mathcal{Description}\)   Link.   给出含 \(n\) 个结点 \(m\) 条边的仙人掌图.\(q\) 次询问,每次询问给出一个点集 \(S\),求 \(S\) 内 ...

  10. 微服务从代码到k8s部署应有尽有系列(三、鉴权)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...