摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现。

本文分享自华为云社区《[Python图像处理] 二十四.图像特效处理之毛玻璃、浮雕和油漆特效》,作者:eastmount。

一.图像毛玻璃特效

图像毛玻璃特效如图所示,左边为原始图像,右边为毛玻璃特效图像。它是用图像邻域内随机一个像素点的颜色来替代当前像素点颜色的过程,从而为图像增加一个毛玻璃模糊的特效。

PS:该图片为作者去喀纳斯拍摄,真心美!

Python实现代码主要是通过双层循环遍历图像的各像素点,再用定义的随机数去替换各邻域像素点的颜色,具体代码如下所示。

#coding:utf-8
import cv2
import numpy as np
#读取原始图像
src = cv2.imread('scenery.png')
#新建目标图像
dst = np.zeros_like(src)
#获取图像行和列
rows, cols = src.shape[:2]
#定义偏移量和随机数
offsets = 5
random_num = 0
#毛玻璃效果: 像素点邻域内随机像素点的颜色替代当前像素点的颜色
for y in range(rows - offsets):
for x in range(cols - offsets):
random_num = np.random.randint(0,offsets)
dst[y,x] = src[y + random_num,x + random_num]
#显示图像
cv2.imshow('src',src)
cv2.imshow('dst',dst)
cv2.waitKey()
cv2.destroyAllWindows()

二.图像浮雕特效

图像浮雕特效是仿造浮雕艺术而衍生的处理,它将要呈现的图像突起于石头表面,根据凹凸程度不同形成三维的立体效果。Python绘制浮雕图像是通过勾画图像的轮廓,并降低周围的像素值,从而产生一张具有立体感的浮雕效果图。传统的方法是设置卷积核,再调用OpenCV的filter2D()函数实现浮雕特效。该函数主要是利用内核实现对图像的卷积运算,其函数原型如下所示:

dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])

  • src表示输入图像
  • dst表示输出的边缘图,其大小和通道数与输入图像相同
  • ddepth表示目标图像所需的深度
  • kernel表示卷积核,一个单通道浮点型矩阵
  • anchor表示内核的基准点,其默认值为(-1,-1),位于中心位置
  • delta表示在储存目标图像前可选的添加到像素的值,默认值为0
  • borderType表示边框模式

核心代码如下:

kernel = np.array([[-1,0,0],[0,1,0],[0,0,0]])
output = cv2.filter2D(src, -1, kernel)

本小节将直接对各像素点进行处理,采用相邻像素相减的方法来得到图像轮廓与平面的差,类似边缘的特征,从而获得这种立体感的效果。为了增强图片的主观感受,还可以给这个差加上一个固定值,如150。实现效果如图所示。

Python通过双层循环遍历图像的各像素点,使用相邻像素值之差来表示当前像素值,从而得到图像的边缘特征,最后加上固定数值150得到浮雕效果,具体代码如下所示。

# -*- coding: utf-8 -*-
import cv2
import numpy as np
#读取原始图像
img = cv2.imread('scenery.png', 1)
#获取图像的高度和宽度
height, width = img.shape[:2]
#图像灰度处理
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#创建目标图像
dstImg = np.zeros((height,width,1),np.uint8)
#浮雕特效算法:newPixel = grayCurrentPixel - grayNextPixel + 150
for i in range(0,height):
for j in range(0,width-1):
grayCurrentPixel = int(gray[i,j])
grayNextPixel = int(gray[i,j+1])
newPixel = grayCurrentPixel - grayNextPixel + 150
if newPixel > 255:
newPixel = 255
if newPixel < 0:
newPixel = 0
dstImg[i,j] = newPixel
#显示图像
cv2.imshow('src', img)
cv2.imshow('dst',dstImg)
#等待显示
cv2.waitKey()
cv2.destroyAllWindows()

三.图像油漆特效

图像油漆特效类似于油漆染色后的轮廓图形,它主要采用自定义卷积核和cv2.filter2D()函数实现,Python实现代码主要通过Numpy定义卷积核,再进行特效处理,卷积核如公式(13-1)所示,其中心权重为10,其余值均为-1。

完整代码如下所示:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
#读取原始图像
src = cv2.imread('scenery.png')
#图像灰度处理
gray = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
#自定义卷积核
kernel = np.array([[-1,-1,-1],[-1,10,-1],[-1,-1,-1]])
#图像浮雕效果
output = cv2.filter2D(gray, -1, kernel)
#显示图像
cv2.imshow('Original Image', src)
cv2.imshow('Emboss_1',output)
#等待显示
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如下图所示:

参考文献:

点击关注,第一时间了解华为云新鲜技术~

跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效的更多相关文章

  1. Python图像处理丨图像腐蚀与图像膨胀

    摘要:本篇文章主要讲解Python调用OpenCV实现图像腐蚀和图像膨胀的算法. 本文分享自华为云社区<[Python图像处理] 八.图像腐蚀与图像膨胀>,作者: eastmount . ...

  2. 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算

    摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...

  3. 跟我学Python图像处理丨何为图像的灰度非线性变换

    摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助. 本文分享自华为云社区<[Python图像处理] 十六.图像的灰度非线性变换之对数变换.伽马变换>,作者:eastmount . ...

  4. 跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

    摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 本文分享自华为云社区<[Python图像处理] 二十一.图像金字塔之图像向下取样和向上 ...

  5. 跟我学Python图像处理丨获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  6. 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

    摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪.图像增强等处理. 本文分享自华为云社区<[Python图像处理] 二十二.Python图像傅里叶变换原理及实现> ...

  7. 跟我学Python图像处理丨傅里叶变换之高通滤波和低通滤波

    摘要:本文讲解基于傅里叶变换的高通滤波和低通滤波. 本文分享自华为云社区<[Python图像处理] 二十三.傅里叶变换之高通滤波和低通滤波>,作者:eastmount . 一.高通滤波 傅 ...

  8. Python图像处理丨认识图像锐化和边缘提取的4个算子

    摘要:图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础. 本文分享自华为云社区<[Python图像处理] 十七.图像锐化与边缘检测之Rober ...

  9. 【python图像处理】图像的缩放、旋转与翻转

    [python图像处理]图像的缩放.旋转与翻转 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图 ...

随机推荐

  1. 一文搞懂EMAS Serverless小程序开发|电子书免费下载

    >> 快来免费下载|电子书<五天玩转 EMAS Serverless> << 点击免费下载 <五天玩转 EMAS Serverless> EMAS Se ...

  2. Java SE 14 新增特性

    Java SE 14 新增特性 作者:Grey 原文地址:Java SE 14 新增特性 源码 源仓库: Github:java_new_features 镜像仓库: GitCode:java_new ...

  3. 给网站添加pjax无刷新,换页音乐不中断

    自从博客加了悬浮音乐播放器后就一直在折腾换页音乐不中断的功能 在网上查找后发现想要实现换页音乐不中断的功能必须要为博客加pjax,于是又苦苦寻找并尝试了一番 最后发现网上实现pjax功能基本上是两种方 ...

  4. [开源内卷] .NET 定时任务 -- FreeScheduler 支持 cron、持久化、可变定时设置

    前言 卷了,卷了,卷了,最近太卷...这篇文章写了好几天了,由于同类型文章太多,排期到今天发布.实在不想卷,得罪了!各位定时任务开源大佬们! .NET 定时组件生态实在太强大了,写下此文只希望能供大家 ...

  5. Centos7 安装部署Kubernetes(k8s)集群

    目录 一.系统环境 二.前言 三.Kubernetes 3.1 概述 3.2 Kubernetes 组件 3.2.1 控制平面组件 3.2.2 Node组件 四.安装部署Kubernetes集群 4. ...

  6. WebDriver常见操作

    本文当个记录贴,记录WebDriver常用的一些函数(含自己封装的函数) 让WebDriver使用浏览器用户设置 1 option = webdriver.ChromeOptions() 2 opti ...

  7. Windows 11 新材质 Mica Alt 效果展示

    本文是 WinUI 3 踩坑记 的一部分,该系列发布于 GitHub@Scighost/WinUI3Keng,若内容出现冲突以 GitHub 上的为准. 微软在 2022-09-02 更新了官方文档, ...

  8. 基于深度学习的文本分类案例:使用LSTM进行情绪分类

    Sentiment classification using LSTM 在这个笔记本中,我们将使用LSTM架构在电影评论数据集上训练一个模型来预测评论的情绪.首先,让我们看看什么是LSTM? LSTM ...

  9. 配置Pod的 /etc/hosts

    某些情况下,DNS 或者其他的域名解析方法可能不太适用,您需要配置 /etc/hosts 文件,在Linux下是比较容易做到的,在 Kubernetes 中,可以通过 Pod 定义中的 hostAli ...

  10. python csv写入多列

    import csv import os def main(): current_dir = os.path.abspath('.') file_name = os.path.join(current ...