Educational Codeforces Round 128 (Rated for Div. 2) A-C+E

A

题目

https://codeforces.com/contest/1680/problem/A

题解

思路

知识点:思维。

如果 \([l1,r1],[l2,r2]\) 有交集可以是相同的数字,那么取 \(min(l1,l2)\) ;如果 \([l1,r1],[l2,r2]\) 没有交集,说明最大值最小值不能是相同的数字,那么取 \(l1+l2\) 。

直接判断端点可能太多,可以利用 \(swap\) 考虑固定 \(l1<l2\) ,就剩下两种情况。

时间复杂度 \(O(1)\)

空间复杂度 \(O(1)\)

代码

#include <bits/stdc++.h>
using namespace std; int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t;
cin>>t;
while(t--){
int l1,r1,l2,r2;
cin>>l1>>r1>>l2>>r2;
if(l2<l1){
swap(l1,l2);
swap(r1,r2);
}
if(r1>=l2) cout<<l2<<'\n';
else cout<<l1+l2<<'\n';
}
return 0;
}

B

题目

https://codeforces.com/contest/1680/problem/B

题解

思路

知识点:思维。

找到机器人中最靠左上的行列坐标(不一定要在同一个机器人身上),如此坐标表示了机器人阵列移动多少次就会出现爆炸。

如果这组行列坐标的位置没有机器人,说明移动到爆炸极限之前都没有机器人会到达左上角,因此不可行,否则可行。

时间复杂度 \(O(nm)\)

空间复杂度 \(O(mn)\)

代码

#include <bits/stdc++.h>
using namespace std; bool bot[7][7]; int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t;
cin>>t;
while(t--){
int n,m;
cin>>n>>m;
int minx = 10,miny = 10;
for(int i = 0;i<n;i++){
for(int j = 0;j<m;j++){
char tmp;
cin>>tmp;
if(tmp == 'R'){
bot[i][j] = 1;
minx = min(minx,i);
miny = min(miny,j);
}
else bot[i][j] = 0;
}
}
if(bot[minx][miny]) cout<<"YES"<<'\n';
else cout<<"NO"<<'\n';
}
return 0;
}

C

题目

https://codeforces.com/contest/1680/problem/C

题解

思路

方法1

知识点:尺取法。

注意到 \(0,1\) 变化具有单调性,左端点变大一定导致 \(0\) 在子串的数量 \(A\) 变少且移除 \(1\) 的数量 \(B\) 变多,而右端点变大则相反。那么对于一个固定了左端点的区间,可以将右端点变大,使 \(A,B\) 分别从较小和较大的值向某个极值靠拢,直到 \(A = B\) 即达到当前左端点的区间的最小 \(cost\) 。此时可以将左端点加一,此举一定会让 \(A \neq B\) ,于是可以继续移动右端点到达新的左端点的最优区间。在上面思考的基础下,枚举左端点即可以,移动右端点到达最优,取每次最小 \(cost\) 的最小值即可。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

方法2

知识点:数学,前缀和。

设子串留有 \(0\) 的数量为 \(A\) ,留有 \(1\) 的数量为 \(B\) ,\(1\) 的总数为 \(sum\) ,则有 \(cost = max(A,sum - B)\)。

再设子串长度为 \(len\) ,则有 \(cost = max(A+B,sum) - B = max(len,sum) - B\)

考虑 \(len \leq sum\) ,则有 \(cost = sum - B\),显然如果 \(len\) 增加,那么 \(B\) 是不减的,因此我们考虑取 \(len = sum\)。

考虑 \(len \geq sum\) ,则有 \(cost = len - B = A\) ,显然如果 \(len\) 减少,那么 \(A\) 是不增的,因此我们考虑取 \(len = sum\)。

综上,最优的子串长度一定为 \(sum\) ,因此枚举左端点,取长度为 \(sum\) 的子串计算每个 \(cost = A\) 取最小值即可。而 \(A\) 可通过前缀和预处理。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

方法1可是基础捏,一定要会哟qwq。

代码

方法1
///尺取法
#include <bits/stdc++.h>
using namespace std; int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t;
cin>>t;
while(t--){
string s;
cin>>s;
int n = s.length();
int cnt0 = 0,cnt1 = 0;
for(int i = 0;i<n;i++){
if(s[i] == '1') cnt1++;
}
int ans = cnt1;
int l = 0,r = 0;
while(l<n){
while(r<n && cnt0!=cnt1){
if(s[r] == '0') cnt0++;
else if(s[r] == '1') cnt1--;
r++;
}
ans = min(ans,max(cnt0,cnt1));///最后r<n,cnt0和cnt1就不一定平衡了
if(s[l] == '0') cnt0--;
else if(s[l] == '1') cnt1++;
l++;
}
cout<<ans<<'\n';
}
return 0;
}
方法2
///结论,取长度为len,费用即字串0的个数
#include <bits/stdc++.h>
using namespace std; int pre[200007]; int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t;
cin>>t;
while(t--){
string s;
cin>>s;
int n = s.length();
s = "?" + s;
for(int i = 1;i<=n;i++) pre[i] = pre[i-1] + (s[i] == '0');
int cnt1 = count(s.begin(),s.end(),'1');
int ans = cnt1;
for(int i = cnt1;i<=n;i++) ans = min(ans,pre[i] - pre[i-cnt1]);
cout<<ans<<'\n';
}
return 0;
}

E

题目

https://codeforces.com/problemset/problem/1680/E

题解

思路

知识点:状压DP。

假设存在一个 \(*\) 的最优最后位置,那么所有 \(*\) 移动到这个位置的路径长度就是最小操作数,同时在这些路径上任取一点作为 \(*\) 的最后位置是不改变路径长度的,因此这些位置也是最优的最后位置,所以可以确定最后一列 \(*\) 的位置也是一个最优位置且是最右的最优位置,所以一开始可以把地图最后一列 \(*\) 之后列都清除,并修改 \(n\) 为最后一列。接下来考虑如何得到所有 \(*\) 到最后一列 \(*\) 的最小路径长度。

设 \(dp[i][j]\) 表示第 \(i\) 列且 \(*\) 的状态为 \(j\) 的最小操作数,\(j = 0/1/2/3\) 分别代表没有 \(*\) ,仅第一行有 \(*\) ,仅第二行有 \(*\) ,两行都有 \(*\) (对应二进制位)。

先考虑将第 \(i-1\)​ 列状态水平转移到第 \(i\)​ 列,假设第 \(i\)​ 列的 \(*\)​ 状态是 \(state\)​ ,第 \(i-1\)​ 列的 \(*\)​ 状态是 \(j\)​ ,那么有水平状态转移方程:

\[dp[i][j|state] = min(dp[i][j|state],dp[i-1][j] + (j\&1) + ((j>>1)\&1))
\]

其中 \(j|state\) 指将第 \(i-1\) 列和第 \(i\) 列的 \(*\) 水平合并的状态, \((j\&1) + ((j>>1)\&1)\) 指合并状态需要的操作次数,即 \(j\) 二进制位 \(1\)​ 的数量。

再考虑将第 \(i\)​ 列状态垂直转移,\(j = 3\) 的情况可以合并成 \(j = 1/2\) 的情况,\(j = 1/2\) 的情况可以垂直移动变为 \(j = 2/1\) 的情况,\(j = 0\) 的情况在同列没有下一种可能情况,因此最后有两个状态可以被转移 \(j = 1/2\) :

\[dp[i][1] = min({dp[i][1],dp[i][2] + 1,dp[i][3] + 1})\\
dp[i][2] = min({dp[i][2],dp[i][1] + 1,dp[i][3] + 1})
\]

最后递推到最后一个 \(*\) 出现的列 \(n\) ,答案即为 \(min(dp[n][1],dp[n][2])\) 。

注意开始时要把 \([1,n]\) 的所有状态设为无穷大(1e9就行),设 \(dp[0][0 \cdots 3] = 0\) 。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

int dp[200007][4+7];
int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
string s1,s2;
cin>>s1>>s2;
s1 = "?" + s1;
s2 = "?" + s2;
while(s1.back() == '.' && s2.back() == '.') n--,s1.pop_back(),s2.pop_back();///找到最后一列有*的
for(int i = 1;i<=n;i++) for(int j = 0;j<4;j++) dp[i][j] = 1e9;///初始化都设为无穷大
for(int i = 1;i<=n;i++){
int state = 0;
if(s1[i] == '*') state |= 1;
if(s2[i] == '*') state |= 2;
for(int j = 0;j<4;j++){///水平移动的转移
dp[i][j | state] = min(dp[i][j | state],dp[i-1][j] + (j&1) + ((j>>1)&1));
}
///垂直移动的转移
dp[i][1] = min({dp[i][1],dp[i][2] + 1,dp[i][3] + 1});
dp[i][2] = min({dp[i][2],dp[i][1] + 1,dp[i][3] + 1});
}
cout<<min(dp[n][1],dp[n][2])<<'\n';
}
return 0;
}

Educational Codeforces Round 128 (Rated for Div. 2) A-C+E的更多相关文章

  1. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  3. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  4. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  5. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  6. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  7. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  8. Educational Codeforces Round 39 (Rated for Div. 2) G

    Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...

  9. Educational Codeforces Round 48 (Rated for Div. 2) CD题解

    Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...

随机推荐

  1. css 动画 (2)

    1. html 结构 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  2. RAID5加热备盘

    RAID 5加热备盘 RAID 10磁盘阵列中最多允许50%的硬盘设备发生故障,但是存在这样一种极端情况,即同一RAID 1磁盘阵列中的硬盘设备若全部损坏,也会导致数据丢失.换句话说,在RAID 10 ...

  3. 动态SQL常用标签

    动态 SQL 目的:为了摆脱在不同条件拼接 SQL 语句的痛苦 在不同条件在生成不同的SQL语句 本质上仍然是SQL语句,不过是多了逻辑代码去拼接SQL,只要保证SQL的正确性按照格式去排列组合 可以 ...

  4. LintCode-165 · 合并两个排序链表-题解

    描述:将两个排序(升序)链表合并为一个新的升序排序链表样例 1:输入: list1 = null, list2 = 0->3->3->null输出: 0->3->3-&g ...

  5. opencv如何在jupyter notebook中显示图片

    方法一: from matplotlib import pyplot as plt import numpy as np import cv2 img = cv2.imread('img.jpg') ...

  6. 逆向进阶,利用 AST 技术还原 JavaScript 混淆代码

    什么是 AST AST(Abstract Syntax Tree),中文抽象语法树,简称语法树(Syntax Tree),是源代码的抽象语法结构的树状表现形式,树上的每个节点都表示源代码中的一种结构. ...

  7. 在SpringBoot中使用logback优化异常堆栈的输出

    一.背景 在我们在编写程序的过程中,无法保证自己的代码不抛出异常.当我们抛出异常的时候,通常会将整个异常堆栈的信息使用日志记录下来.通常一整个异常堆栈的信息是比较多的,而且存在一些没用的信息.那么我们 ...

  8. git clone指定分支

    技术背景 Git是代码版本最常用的管理工具,此前也写过一篇介绍Git的基本使用的博客,而本文介绍一个可能在特定场景下能够用到的功能--直接拉取指定分支的内容. Git Clone 首先看一下如果我们按 ...

  9. 一个 "开箱即用" 个人博客全栈系统项目!vue+node+express+mysql+sequlize+uniapp

    " MG'Blog " 一个 "开箱即用" 个人博客全栈系统项目! 探索本项目的源码 » 前台预览 · 管理端预览 v1.0.2 小程序预览 v1.0.2 介绍 ...

  10. 使用ROOT用户运行Jenkins

    !本教程仅适用于以YUM.APT等包管理器安装的Jenkins. 使用ROOT用户运行Jenkins,以保证Jenkins以最高权限执行任务. 注:会存在安全风险! 1.找到Jenkins启动脚本 通 ...