NC20276 [SCOI2010]传送带
NC20276 [SCOI2010]传送带
题目
题目描述
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间
输入描述
输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By
第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy
第三行是3个整数,分别是P,Q,R
输出描述
输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位
示例1
输入
0 0 0 100
100 0 100 100
2 2 1
输出
136.60
备注
对于 \(100\%\) 的数据,\(1\le A_x,A_y,B_x,B_y,C_x,C_y,D_x,D_y\le10^3\) 。
题解
思路
知识点:三分,计算几何。
关于时间计算有两个变量,一个是在 \(AB\) 上的终点 \(E\),一个是 \(CD\) 上的起点 \(F\) ,则总时长为 \(\frac{|AE|}{P} + \frac{|EF|}{R} + \frac{|FD|}{Q}\) 。
先固定 \(E\) ,计算固定 \(E\) 后最短时间,此时总时间关于 \(F\) 是单谷函数,所以可以三分 \(F\) 确定在 \(E\) 固定的情况下时间最短的 \(F\) ,然后就能得到某个 \(E\) 处的最短时间。而若对于每个 \(E\) 都取最短时间作为总a时间,则总时间关于 \(E\) 的函数也是一个单谷函数,所以可以三分 \(E\) ,求出使得总时间最短的点 \(E\) 。于是一个二重三分就能解决问题,里面的确定 \(F\) 得到每个 \(E\) 的最短时间,外面的确定求出使得总时间最短的点 \(E\) 。
实际上,总时长关于 \(E\) 和 \(F\) 的多元函数只有一个最小值,而对每个 \(E\) 都取最小值得到的总时长关于 \(E\) 的函数是一定过最小点的曲线,因此对 \(E\) 三分就能得到最小值。
细节上用参数方程来实现在直线上三分,用两点距离作为误差判断条件。
坑点:速度和右端点变量名重了,会炸qwq。
时间复杂度 \(O(1)\)
空间复杂度 \(O(1)\)
代码
#include <bits/stdc++.h>
using namespace std;
const double esp = 1e-3;
struct Point {
double x, y;
}A, B, C, D;
double P, Q, R;//!R 和 r不要搞混了,被坑死了
double dist(Point a, Point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
Point Fx1(double t) {
return { (B.x - A.x) * t + A.x,(B.y - A.y) * t + A.y };
}
Point Fx2(double t) {
return { (D.x - C.x) * t + C.x,(D.y - C.y) * t + C.y };
}
double calc(Point E) {
double ans = dist(A, E) / P;
double l = 0, r = 1;
while (dist(Fx2(l), Fx2(r)) >= esp) {
double mid1 = l + (r - l) / 3;
double mid2 = r - (r - l) / 3;
Point F1 = Fx2(mid1);
Point F2 = Fx2(mid2);
if (dist(E, F1) / R + dist(F1, D) / Q >= dist(E, F2) / R + dist(F2, D) / Q) l = mid1;
else r = mid2;
}
Point F = Fx2(l);
ans += dist(E, F) / R + dist(F, D) / Q;
return ans;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> A.x >> A.y >> B.x >> B.y;
cin >> C.x >> C.y >> D.x >> D.y;
cin >> P >> Q >> R;
double l = 0, r = 1;
while (dist(Fx1(l), Fx1(r)) >= esp) {
double mid1 = l + (r - l) / 3;
double mid2 = r - (r - l) / 3;
Point E1 = Fx1(mid1);
Point E2 = Fx1(mid2);
if (calc(E1) >= calc(E2)) l = mid1;
else r = mid2;
}
Point E = Fx1(l);
cout << fixed << setprecision(2) << calc(E) << '\n';
return 0;
}
NC20276 [SCOI2010]传送带的更多相关文章
- bzoj 1857: [Scoi2010]传送带 三分
题目链接 1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 934 Solved: 501[Submit][Stat ...
- P2571 [SCOI2010]传送带
P2571 [SCOI2010]传送带 三分套三分. 前提条件:P3382 [模板]三分法 三分,求区间内单峰函数的最大/最小值. 我们把两条线段都跑三分,先ab后cd,求出最小值. 可以直接将二维坐 ...
- 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- [SCOI2010]传送带 三分法
[SCOI2010]传送带 LG传送门 三分法模板. 关于为什么可以三分,我选择感性理解,有人证明了,总之我是懒得证了. 假设路径是\(A \to E \to F \to D\),\(E\)和\(F\ ...
- 【BZOJ1857】[Scoi2010]传送带 三分套三分
[BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...
- BZOJ1857 Scoi2010 传送带 【三分】
BZOJ1857 Scoi2010 传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P ...
- 【解题报告】洛谷 P2571 [SCOI2010]传送带
[解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https ...
- Bzoj 1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- BZOJ 1857: [Scoi2010]传送带
二次联通门 : BZOJ 1857: [Scoi2010]传送带 /* BZOJ 1857: [Scoi2010]传送带 三分套三分 可能是吧..dalao们都说明显是一个单峰函数 可是我证不出来.. ...
随机推荐
- Jenkins+Allure测试报告+飞书机器人发送通知
一.前言 之前讲了jenkins如何设置定时任务执行脚本,结合实际情况,本篇讲述在jenkins构建成功后,如何生成测试报告,以及推送飞书(因为我公司用的是飞书,所以是发送到飞书机器人). 本次实践搞 ...
- SpringCloudAlibaba微服务docker容器打包和部署示例实战
概述 我们使用前面<SpringCloudAlibaba注册中心与配置中心之利器Nacos实战与源码分析(中)>的两个微服务示例,分别是库存微服务和订单微服务,基于Nacos注册中心和配置 ...
- 【FAQ】HMS Core广告服务:如何获取正式广告位ID以及流量变现的受限情况
HMS Core广告服务开发指南中提到"xxxx为测试专用的广告位ID,App正式发布时需要改为正式的广告位ID",那么今天咱们就来说说,怎么获取正式的广告位ID. 测试广告位ID ...
- WFP资源
资源基础 WPF程序在代码中以及在标记中的各个位置定义资源,具有高效性.可维护性.适应性的优点. 资源的层次 <Windows.Resource> <ImageBrush x:key ...
- 年年出妖事,一例由JSON解析导致的"薛定谔BUG"排查过程记录
前言 做开发这么多年,也碰到无数的bug了.不过再复杂的bug,只要仔细去研读代码,加上debug,总能找到原因. 但是最近公司内碰到的这一个bug,这个bug初看很简单,但是非常妖孽,在一段时间内我 ...
- leetcode704二分查找
title: 二分查找 题目描述 题目链接:二分查找 解题思路 二分模板默写 int search(vector<int>& nums, int target) { int lef ...
- 【题解】2021CSP-J2T3网络连接
目录 题目链接 题目分析 是否重复 读入提取数 非法情况判断 参考代码 题目链接 题目分析 map不会冲突!!不一定要like代码中那样加-号! 模拟,算不上大, 首先,我们想想整个流程: 现在,我们 ...
- REST APIs
REST APIs 旨在通过HTTP 的动作语义METHOD, 以替代各种传统CRUD 操作所带来的命名问题,例如 "/userAdd"."/userDelete&quo ...
- 记一次百万行WPF项目代码的重构记录
此前带领小组成员主导过一个百万行代码上位机项目的重构工作,分析项目中存在的问题做了些针对性的优化,整个重构工作持续了一年半之久. 主要针对以下问题: 1.产品型号太多导致代码工程的分支太多,维护时会产 ...
- 关于我学git这档子事(4)
------------恢复内容开始------------ 当本地分支(main/dev)比远程仓库分支(main/dev)落后几次提交时 先: git pull 更新本地仓库 再 git push ...