[SHOI2006]仙人掌

简要解析

其实很简单

只要普通树形 \(dp\) 就行了

\(f_x\) 表示 \(x\) 能向下延深的最大距离,\(v\) 是 \(x\) 的儿子

当一个点不属于任何环时 \(f_x = \max(f_v + 1)\)

这是更新 \(ans = \max(ans , f_x + f_v + 1)\)

只是带环的话,环要单独算

这是我们的直径可以不经过环顶端的点,直接选环中两个点 \(u,v\)

让 \(ans = \max(ans , f_u + f_v + dist_{u,v})\)

显然不能 \(n^2\) 枚举这两个环中点

因为要符合最短路,所以这两个点距离 \(dist_{u,v} \leq lim\),\(lim\) 为环长的一半

那么我们可以再 \(dp\) 求 \(f_u + f_v + dist_{u,v}\)

给 \(u,v\) 规定方向,从离环顶距离小的往大

于是破环成链再倍长,单调队列维护

\(Code\)

#include<cstdio>
#include<iostream>
using namespace std; const int N = 100005;
int n , m , tot , dfc;
int h[N] , dfn[N] , low[N] , fa[N] , f[N] , a[N] , q[N] , ans; struct edge{
int to , nxt;
}e[N << 1];
void add(int x , int y){e[++tot] = edge{y , h[x]} , h[x] = tot;} void solve(int x , int v)
{
int lim , cnt = 0 , h = 1 , r = 1;
for(register int i = v; i != fa[x]; i = fa[i]) a[++cnt] = f[i];
for(register int i = 1; i <= cnt; i++) a[i + cnt] = a[i];
lim = cnt >> 1 , q[1] = 1;
for(register int i = 2; i <= cnt * 2; i++)
{
while (h < r && i - q[h] > lim) h++;
ans = max(ans , i - q[h] + a[i] + a[q[h]]);
while (r >= h && a[q[r]] - q[r] <= a[i] - i) r--;
q[++r] = i;
}
for(register int i = 1; i <= cnt; i++) f[x] = max(f[x] , a[i] + min(i , cnt - i));
} void tarjan(int x)
{
dfn[x] = low[x] = ++dfc;
int v;
for(register int i = h[x]; i; i = e[i].nxt)
{
v = e[i].to;
if (v == fa[x]) continue;
if (!dfn[v]) fa[v] = x , tarjan(v) , low[x] = min(low[x] , low[v]);
else low[x] = min(low[x] , dfn[v]);
if (low[v] > dfn[x])
{
ans = max(ans , f[x] + f[v] + 1);
f[x] = max(f[x] , f[v] + 1);
}
}
for(register int i = h[x]; i; i = e[i].nxt)
if (fa[v = e[i].to] != x && dfn[v] > dfn[x]) solve(x , v);
} int main()
{
scanf("%d%d" , &n , &m);
int num , x , y;
for(register int i = 1; i <= m; i++)
{
scanf("%d%d" , &num , &x);
for(register int j = 2; j <= num; j++)
scanf("%d" , &y) , add(x , y) , add(y , x) , x = y;
}
tarjan(1);
printf("%d" , ans);
}

[SHOI2006]仙人掌的更多相关文章

  1. luogu P4129 [SHOI2006]仙人掌

    题目描述 仙人掌图(cactus)是一种无向连通图,它的每条边最多只能出现在一个简单回路(simple cycle)里面.从直观上说,可以把仙人掌图理解为允许存在回路的树.但是仙人掌图和树之间有个本质 ...

  2. 2018.10.29 洛谷P4129 [SHOI2006]仙人掌(仙人掌+高精度)

    传送门 显然求出每一个环的大小. Ans=∏i(siz[i]+1)Ans=\prod_i(siz[i]+1)Ans=∏i​(siz[i]+1) 注意用高精度存答案. 代码: #include<b ...

  3. 洛谷 P4244 [SHOI2008]仙人掌图 II 解题报告

    P4244 [SHOI2008]仙人掌图 II 题目背景 题目这个II是和SHOI2006的仙人掌图区分的,bzoj没有. 但是实际上还是和bzoj1023是一个题目的. 题目描述 如果某个无向连通图 ...

  4. bzoj1023: [SHOI2008]cactus仙人掌图

    学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...

  5. 【BZOJ 1023】【SHOI 2008】cactus仙人掌图

    良心的题解↓ http://z55250825.blog.163.com/blog/static/150230809201412793151890/ tarjan的时候如果是树边则做树形DP(遇到环就 ...

  6. 【BZOJ-1952】城市规划 [坑题] 仙人掌DP + 最大点权独立集(改)

    1952: [Sdoi2010]城市规划 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 73  Solved: 23[Submit][Status][ ...

  7. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

  8. 仙人掌(cactus)

    仙人掌(cactus) Time Limit:1000ms Memory Limit:64MB 题目描述 LYK 在冲刺清华集训(THUSC) !于是它开始研究仙人掌,它想来和你一起分享它最近研究的 ...

  9. 【bzoj1023】仙人掌图

    [bzoj1023]仙人掌图 题意 给一棵仙人掌,求直径. \(n\leq 100000\) 分析 分析1:[Tarjan]+[环处理+单调队列优化线性dp]+[树形dp] 分开两种情况处理: ①环: ...

  10. hdu3594 强连通(仙人掌图)

    题意:给定一张有向图,问是否是仙人掌图.仙人掌图的定义是,首先,这张图是一个强连通分量,其次所有边在且仅在一个环内. 首先,tarjan可以判强连通分量是否只有一个.然后对于所有边是否仅在一个环内,我 ...

随机推荐

  1. postman的运用

    链接: https://pan.baidu.com/s/1gfaKoAv 密码: dp7t 最近要测试和其他系统对接,忽然想起了postman这款url测试神器. 现分享如下: 下载完成后解压到文件夹 ...

  2. MICCAI 论文投稿须知翻译

    MICCAI 论文投稿须知翻译 以MICCAI 2021 PAPER SUBMISSION AND REBUTTAL GUIDELINES为例,每年投稿须知类似 作者信息和rebuttal 本文件包含 ...

  3. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  4. Kafka Connect学习

    一.基础介绍 1.概念 2.Debezium 为捕获数据更改(change data capture,CDC)提供了一个低延迟的流式处理平台.可以消费数据库每一个行级别(row-level)的更改. ...

  5. MongoDB海量数据分页查询优化

    MongoDB海量数据分页查询优化 一.背景 大量数据需从Mongo拿出来,一次性拿出来不科学,传统分页效率低下 二.传统方案 就是最常规的方案,假设 我们需要对文章 articles 这个表(集合) ...

  6. 痞子衡嵌入式:存储器大厂Micron的NOR Flash芯片特殊丝印设计(FBGA代码)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家讲的是存储器大厂Micron的NOR Flash芯片特殊丝印设计(FBGA代码). 痞子衡之前写过一篇文章 <J-Flash在Micron ...

  7. PL/SQL Developer使用中文条件查询时无数据的解决方法

    1.在PL/SQL Developer中执行sql命令:select userenv('language') from dual; 显示结果为:AMERICAN_AMERICA.ZHS16GBK: 2 ...

  8. jmeter Foreach 控制器与json提取器/正则表达式

    适用场景:对某些业务数据依次操作 如:删除某个用户下的所有人员数据,无批量删除接口时,只能循环调用删除人员接口,直到删除完成 返回数据格式: 1.  使用json提取器或正则表达式提取业务数据(jso ...

  9. vue 项目引入 echarts折线图

    一.components文件下新建 lineCharts.vue <template> <div :class="className" :style=" ...

  10. kafka详解(01) - 概述

    kafka详解(01) - 概述 定义:Kafka是一个分布式的基于发布/订阅模式的消息队列(Message Queue),主要应用于大数据实时处理领域. 消息队列 MQ传统应用场景之异步处理 使用消 ...