支付宽表

支付宽表的目的,最主要的原因是支付表没有到订单明细,支付金额没有细分到商品上, 没有办法统计商品级的支付状况。 所以本次宽表的核心就是要把支付表的信息与订单明细关联上。

解决方案有两个

一个是把订单明细表(或者宽表)输出到 Hbase 上,在支付宽表计算时查询 hbase, 这相当于把订单明细作为一种维度进行管理。

一个是用流的方式接收订单明细,然后用双流 join 方式进行合并。因为订单与支付产 生有一定的时差。所以必须用 intervalJoin 来管理流的状态时间,保证当支付到达时订 单明细还保存在状态中。

支付相关实体类

PaymentInfo.java:支付实体类

import lombok.Data;
import java.math.BigDecimal;
/**
* @author zhangbaohpu
* @date 2021/12/25 10:08
* @desc 支付实体类
*/
@Data
public class PaymentInfo {
   Long id;
   Long order_id;
   Long user_id;
   BigDecimal total_amount;
   String subject;
   String payment_type;
   String create_time;
   String callback_time;
}

PaymentWide.java:支付宽表实体类

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.commons.beanutils.BeanUtils;
import java.lang.reflect.InvocationTargetException;
import java.math.BigDecimal;
/**
* @author zhangbaohpu
* @date 2021/12/25 10:10
* @desc 支付宽表实体类
*/
@Data
@AllArgsConstructor
@NoArgsConstructor
public class PaymentWide {
   Long payment_id;
   String subject;
   String payment_type;
   String payment_create_time;
   String callback_time;
   Long detail_id;
   Long order_id ;
   Long sku_id;
   BigDecimal order_price ;
   Long sku_num ;
   String sku_name;
   Long province_id;
   String order_status;
   Long user_id;
   BigDecimal total_amount;
   BigDecimal activity_reduce_amount;
   BigDecimal coupon_reduce_amount;
   BigDecimal original_total_amount;
   BigDecimal feight_fee;
   BigDecimal split_feight_fee;
   BigDecimal split_activity_amount;
   BigDecimal split_coupon_amount;
   BigDecimal split_total_amount;
   String order_create_time;
   String province_name;//查询维表得到
   String province_area_code;
   String province_iso_code;
   String province_3166_2_code;
   Integer user_age ;
   String user_gender;
   Long spu_id; //作为维度数据 要关联进来
   Long tm_id;
   Long category3_id;
   String spu_name;
   String tm_name;
   String category3_name;
   public PaymentWide(PaymentInfo paymentInfo, OrderWide orderWide){
       mergeOrderWide(orderWide);
       mergePaymentInfo(paymentInfo);
  }
   public void mergePaymentInfo(PaymentInfo paymentInfo ) {
       if (paymentInfo != null) {
           try {
               BeanUtils.copyProperties(this,paymentInfo);
               payment_create_time=paymentInfo.create_time;
               payment_id = paymentInfo.id;
          } catch (IllegalAccessException e) {
               e.printStackTrace();
          } catch (InvocationTargetException e) {
               e.printStackTrace();
          }
      }
  }
   public void mergeOrderWide(OrderWide orderWide ) {
       if (orderWide != null) {
           try {
               BeanUtils.copyProperties(this,orderWide);
               order_create_time=orderWide.create_time;
          } catch (IllegalAccessException e) {
               e.printStackTrace();
          } catch (InvocationTargetException e) {
               e.printStackTrace();
          }
      }
  }
}

支付宽表主程序

目前还没有任何计算,仍然放在dwm层

在dwm包下创建PaymentWideApp.java任务类

import cn.hutool.core.date.DatePattern;
import cn.hutool.core.date.DateUnit;
import cn.hutool.core.date.DateUtil;
import com.alibaba.fastjson.JSON;
import com.zhangbao.gmall.realtime.bean.OrderWide;
import com.zhangbao.gmall.realtime.bean.PaymentInfo;
import com.zhangbao.gmall.realtime.bean.PaymentWide;
import com.zhangbao.gmall.realtime.utils.MyKafkaUtil;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.util.Collector;

import java.time.Duration;

/**
* @author zhangbaohpu
* @date 2021/12/25 10:16
* @desc 支付宽表
*/
public class PaymentWideApp {
   public static void main(String[] args) {
       StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
       //添加并行度
       env.setParallelism(4);

       //设置检查点
//       env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
//       env.getCheckpointConfig().setCheckpointTimeout(60000);
//       env.setStateBackend(new FsStateBackend("hdfs://hadoop101:9000/gmall/flink/checkpoint/paymentWide"));
//       //指定哪个用户读取hdfs文件
//       System.setProperty("HADOOP_USER_NAME","zhangbao");

       //设置kafka主题及消费者组
       String paymentInfoTopic = "dwd_payment_info";
       String orderWideTopic = "dwm_order_wide";
       String paymentWideTopic = "dwm_payment_wide";
       String paymentWideGroup = "paymentWideGroup";

       //获取支付信息
       FlinkKafkaConsumer<String> paymentInfo = MyKafkaUtil.getKafkaSource(paymentInfoTopic, paymentWideGroup);
       DataStreamSource<String> paymentInfoJsonStrDs = env.addSource(paymentInfo);
       //获取订单宽表信息
       FlinkKafkaConsumer<String> orderWide = MyKafkaUtil.getKafkaSource(orderWideTopic, paymentWideGroup);
       DataStreamSource<String> orderWideJsonStrDs = env.addSource(orderWide);

       //转换格式
       SingleOutputStreamOperator<PaymentInfo> paymentJsonDs = paymentInfoJsonStrDs.map(paymentInfoStr -> JSON.parseObject(paymentInfoStr, PaymentInfo.class));
       SingleOutputStreamOperator<OrderWide> orderWideJsonDs = orderWideJsonStrDs.map(orderWideStr -> JSON.parseObject(orderWideStr, OrderWide.class));

       paymentJsonDs.print("payment info >>>");
       orderWideJsonDs.print("order wide >>>");

       //指定事件时间字段
       SingleOutputStreamOperator<PaymentInfo> paymentInfoWithWaterMarkDs = paymentJsonDs.assignTimestampsAndWatermarks(
           WatermarkStrategy.<PaymentInfo>forBoundedOutOfOrderness(Duration.ofSeconds(3))
              .withTimestampAssigner(new SerializableTimestampAssigner<PaymentInfo>() {
                   @Override
                   public long extractTimestamp(PaymentInfo paymentInfo, long l) {
                       return DateUtil.parse(paymentInfo.getCallback_time(), DatePattern.NORM_DATETIME_PATTERN).getTime();
                  }
              })
      );
       SingleOutputStreamOperator<OrderWide> orderWideWithWaterMarkDs = orderWideJsonDs.assignTimestampsAndWatermarks(
           WatermarkStrategy.<OrderWide>forBoundedOutOfOrderness(Duration.ofSeconds(3))
              .withTimestampAssigner(new SerializableTimestampAssigner<OrderWide>() {
                   @Override
                   public long extractTimestamp(OrderWide orderWide, long l) {
                       return DateUtil.parse(orderWide.getCreate_time(), DatePattern.NORM_DATETIME_PATTERN).getTime();
                  }
              })
      );

       //分组
       KeyedStream<PaymentInfo, Long> paymentInfoKeyedDs = paymentInfoWithWaterMarkDs.keyBy(payInfoObj -> payInfoObj.getOrder_id());
       KeyedStream<OrderWide, Long> orderWideKeyedDs = orderWideWithWaterMarkDs.keyBy(orderWideObj -> orderWideObj.getOrder_id());

       paymentInfoKeyedDs.print("paymentInfoKeyedDs >>>");
       orderWideKeyedDs.print("orderWideKeyedDs >>>");

       //双流join,用支付数据关联订单数据
       SingleOutputStreamOperator<PaymentWide> paymentWideObjDs = paymentInfoKeyedDs.intervalJoin(orderWideKeyedDs)
              .between(Time.seconds(-1800), Time.seconds(1800))
              .process(new ProcessJoinFunction<PaymentInfo, OrderWide, PaymentWide>() {
                   @Override
                   public void processElement(PaymentInfo paymentInfo, OrderWide orderWide, ProcessJoinFunction<PaymentInfo, OrderWide, PaymentWide>.Context context, Collector<PaymentWide> collector) throws Exception {
                       System.out.println(paymentInfo);
                       System.out.println(orderWide);
                       collector.collect(new PaymentWide(paymentInfo, orderWide));
                  }
              });
       //将数据流转换为json
       SingleOutputStreamOperator<String> paymentWideDs = paymentWideObjDs.map(paymentWide -> JSON.toJSONString(paymentWide));
       paymentWideDs.print("payment wide json >>> ");
       //发送到kafka
       FlinkKafkaProducer<String> kafkaSink = MyKafkaUtil.getKafkaSink(paymentWideTopic);
       paymentWideDs.addSink(kafkaSink);

       try {
           env.execute("payment wide task");
      } catch (Exception e) {
           e.printStackTrace();
      }
  }
}

到这里,支付宽表的操作就完成了。

项目地址:https://github.com/zhangbaohpu/gmall-flink-parent/tree/master/gmall-realtime

总结

DWM 层部分的代码主要的责任,是通过计算把一种明细转变为另一种明细以应对后续的统计。学完本阶段内容要求掌握

  • 学会利用状态(state)进行去重操作。(需求:UV 计算)

  • 学会利用 CEP 可以针对一组数据进行筛选判断。需求:跳出行为计算

  • 学会使用 intervalJoin 处理流 join

  • 学会处理维度关联,并通过缓存和异步查询对其进行性能优化。

更多请在某公号平台搜索:选手一号位,本文编号:1011,回复即可获取。

11.Flink实时项目之支付宽表的更多相关文章

  1. 9.Flink实时项目之订单宽表

    1.需求分析 订单是统计分析的重要的对象,围绕订单有很多的维度统计需求,比如用户.地区.商品.品类.品牌等等.为了之后统计计算更加方便,减少大表之间的关联,所以在实时计算过程中将围绕订单的相关数据整合 ...

  2. 10.Flink实时项目之订单维度表关联

    1. 维度查询 在上一篇中,我们已经把订单和订单明细表join完,本文将关联订单的其他维度数据,维度关联实际上就是在流中查询存储在 hbase 中的数据表.但是即使通过主键的方式查询,hbase 速度 ...

  3. 7.Flink实时项目之独立访客开发

    1.架构说明 在上6节当中,我们已经完成了从ods层到dwd层的转换,包括日志数据和业务数据,下面我们开始做dwm层的任务. DWM 层主要服务 DWS,因为部分需求直接从 DWD 层到DWS 层中间 ...

  4. 5.Flink实时项目之业务数据准备

    1. 流程介绍 在上一篇文章中,我们已经把客户端的页面日志,启动日志,曝光日志分别发送到kafka对应的主题中.在本文中,我们将把业务数据也发送到对应的kafka主题中. 通过maxwell采集业务数 ...

  5. 3.Flink实时项目之流程分析及环境搭建

    1. 流程分析 前面已经将日志数据(ods_base_log)及业务数据(ods_base_db_m)发送到kafka,作为ods层,接下来要做的就是通过flink消费kafka 的ods数据,进行简 ...

  6. 6.Flink实时项目之业务数据分流

    在上一篇文章中,我们已经获取到了业务数据的输出流,分别是dim层维度数据的输出流,及dwd层事实数据的输出流,接下来我们要做的就是把这些输出流分别再流向对应的数据介质中,dim层流向hbase中,dw ...

  7. 11. SpringCloud实战项目-初始化数据库和表

    SpringCloud实战项目全套学习教程连载中 PassJava 学习教程 简介 PassJava-Learning项目是PassJava(佳必过)项目的学习教程.对架构.业务.技术要点进行讲解. ...

  8. 1.Flink实时项目前期准备

    1.日志生成项目 日志生成机器:hadoop101 jar包:mock-log-0.0.1-SNAPSHOT.jar gmall_mock ​ |----mock_common ​ |----mock ...

  9. 4.Flink实时项目之数据拆分

    1. 摘要 我们前面采集的日志数据已经保存到 Kafka 中,作为日志数据的 ODS 层,从 kafka 的ODS 层读取的日志数据分为 3 类, 页面日志.启动日志和曝光日志.这三类数据虽然都是用户 ...

随机推荐

  1. metinfo 6.0 任意文件读取漏洞

    一. 启动环境 1.双击运行桌面phpstudy.exe软件 2.点击启动按钮,启动服务器环境 二.代码审计 1.双击启动桌面Seay源代码审计系统软件 2.点击新建项目按钮,弹出对画框中选择(C:\ ...

  2. dfs:x+y=z

    #include <iostream.h> int a[100]; static int stat=0; void dfs(int n) { if(n==3) { if(a[0]+a[1] ...

  3. 在Spring的事务体系中,事务传播特性:Required和RequiresNew有何不同?

    Required 如果当前存在一个事务,则加入当前事务.如果不存在任何事务,则创建一个新的事务.总之,要至少保证在一个事务中运行.PROPAGATION_REQUIRED通常作为默认的事务传播行为.p ...

  4. 面试问题之计算机网络:TCP滑动窗口

    滑动窗口协议是传输层进行流量控制的一种措施,接收方通过通知发送方自己的窗口大小,从而控制发送方的发送速度,从而达到防止发送方发送速度过快而导致自己被淹没的目的,并且滑动窗口分为接收窗口和发送窗口.TC ...

  5. SQLyog创建用户并授权的过程

    点击你要授权的数据库然后点击用户管理器 然后输入用户名和密码主机选localhost 然后点击创建,然后选择你创建的数据库全选 最后保存就可以了

  6. 会话缓存(Session Cache)?

    最常用的一种使用 Redis 的情景是会话缓存(session cache).用 Redis 缓存会 话比其他存储(如 Memcached)的优势在于:Redis 提供持久化.当维护一个不 是严格要求 ...

  7. java中如何获得src路径

    代码 解析: 类名.class.get类加载器().getResourceAsStream("文件名"); 案例代码: Demo.class.getClassLoader().ge ...

  8. Azure DevOps (八) 通过流水线编译Docker镜像

    上一篇文章我们完成了最简单的传统部署:上传应用到服务器上使用守护进程进行应用的部署. 本篇文章我们开始研究容器化和流水线的协作. 在开始操作之前,我们首先需要准备一下我们的dockerfile,这里我 ...

  9. 4-Pandas数据预处理之数据转换(df.map()、df.replace())

    在数据分析中,根据需求,有时候需要将一些数据进行转换,而在Pandas中,实现数据转换的常用方法有: 利用函数或是映射 可以将自己定义的或者是其他包提供的函数用在Pandas对象上实现批量修改. ap ...

  10. msmpeng.exe阻止移动硬盘弹出

    MsMpEng.exe 占用 该进程是微软反恶意软件服务的一个可执行文件,用户无法手动停止该进程. 首先运行   eventvwr.msc打开事件查看器,找到警告信息,查看是什么进程在阻止硬盘弹出. ...