[OpenCV实战]1 基于深度学习识别人脸性别和年龄
目录
本教程中,我们将讨论应用于面部的深层学习的有趣应用。我们将估计年龄,并从单个图像中找出该人的性别。模型由GilLevi和TalHassner训练(https://talhassner.github.io/home/publication/2015_CVPR)。本文介绍了如何在OpenCV中使用该模型的步骤说明。Opencv版本3.4.3以上。代码教程代码可以分为四个部分:
1基于CNN的性别分类建模原理
作者使用非常简单的卷积神经网络结构,类似于Caffenet和Alexnet。网络使用3个卷积层、2个全连接层和一个最终的输出层。下面给出了这些层的细节。COV1:第一卷积层具有96个内核大小7的节点。COV2:第二个卷积层Conv层具有256个具有内核大小5的节点。CONV3:第三个CONV层具有384个内核大小为3的节点。两个完全连接的层各自具有512个节点。
训练数据来源:https://talhassner.github.io/home/projects/Adience/Adience-data.html
检测程序主要有四块:检测人脸检测、性别检测、年龄显示和输出。
1.1 人脸识别
我们将使用人脸检测器(tensorflow模型)进行人脸检测。该模型很简单,即使在CPU上也是相当快的。详细见论文:
https://arxiv.org/pdf/1502.00046.pdf
1.2 性别预测
将性别预测设定为一个分类问题。性别预测网络(caffe模型)中的输出层类型为两类,2个节点表示“男性”和“女性”两类。以这两个输出的最大值作为最终的性别。
1.3 年龄预测
理想情况下,年龄预测应该作为一个回归问题来处理。然而通过回归准确估计年龄是很有挑战性的。即使是人类也无法通过观察一个人来准确预测年龄。但是我们能够知道他们是20多岁还是30多岁。由于这个原因,把这个问题描述为一个分类问题是明智的,因为我们试图估计这个人所处的年龄组。例如,0-2范围内的年龄是一个类,4-6是另一个类,依此类推。因此数据集分为以下8个年龄组[(0-2)、(4-6)、(8-12)、(15-20)、(25-32)、(38-43)、(48-53)、(60-100)]。因此,年龄预测网络在最后一层有8个节点,表示所述年龄范围。
应该记住,从一幅图像中预测年龄并不是一个很容易解决的问题,因为感知到的年龄取决于许多因素,而同龄的人在世界各地可能看起来很不一样。而且,人们非常努力地隐藏他们的真实年龄!
我们加载年龄网络(caffe模型)并使用前向通道获得输出。由于网络结构类似于性别网络,所以我们可以从所有输出中提取出最大值来得到预测的年龄组
1.4 结果
尽管性别预测网络表现良好,但年龄预测网络仍未达到我们的预期。所以添加人脸对齐算法或者数据样本很多时候,可以通过回归的模型来检测。但是性别人脸检测还是很准确的。
2 代码
在VS2017下运行了C++代码,其中OpenCV版本至少要3.4.5以上。不然模型读取会有问题。三个模型文件太大,见下载链接:
https://download.csdn.net/download/luohenyj/10993309
https://github.com/luohenyueji/OpenCV-Practical-Exercise
如果没有积分(系统自动设定资源分数)看看参考链接。我搬运过来的,大修改没有。
其中tensorflow和caffe模型都可以用opencv中的readnet函数读取,流程很简单。看看代码就会。
代码提供了C++和Python版本,但是python版本没有运行,原因opencv版本太低,不想升级。代码都有详细的注释。
C++版本:
#include <tuple>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iterator>
using namespace cv;
using namespace cv::dnn;
using namespace std;
/**
* @brief Get the Face Box object 人脸定位
*
* @param net 人脸检测网络
* @param frame 检测图像
* @param conf_threshold 阈值
* @return tuple<Mat, vector<vector<int>>> 元组容器,可返回多个值
*/
tuple<Mat, vector<vector<int>>> getFaceBox(Net net, Mat &frame, double conf_threshold)
{
//图像复制
Mat frameOpenCVDNN = frame.clone();
int frameHeight = frameOpenCVDNN.rows;
int frameWidth = frameOpenCVDNN.cols;
//缩放尺寸
double inScaleFactor = 1.0;
//检测图大小
Size size = Size(300, 300);
// std::vector<int> meanVal = {104, 117, 123};
Scalar meanVal = Scalar(104, 117, 123);
cv::Mat inputBlob;
inputBlob = cv::dnn::blobFromImage(frameOpenCVDNN, inScaleFactor, size, meanVal, true, false);
net.setInput(inputBlob, "data");
//四维矩阵输出
cv::Mat detection = net.forward("detection_out");
//提取结果信息
cv::Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
vector<vector<int>> bboxes;
for (int i = 0; i < detectionMat.rows; i++)
{
//预测概率
float confidence = detectionMat.at<float>(i, 2);
if (confidence > conf_threshold)
{
//左上角点,坐标被归一化
int x1 = static_cast<int>(detectionMat.at<float>(i, 3) * frameWidth);
int y1 = static_cast<int>(detectionMat.at<float>(i, 4) * frameHeight);
//右下角角点,坐标被归一化
int x2 = static_cast<int>(detectionMat.at<float>(i, 5) * frameWidth);
int y2 = static_cast<int>(detectionMat.at<float>(i, 6) * frameHeight);
vector<int> box = { x1, y1, x2, y2 };
//人脸坐标
bboxes.push_back(box);
//图像框选
cv::rectangle(frameOpenCVDNN, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(0, 255, 0), 2, 4);
}
}
return make_tuple(frameOpenCVDNN, bboxes);
}
int main(void)
{
//人脸模型
string faceProto = "model/opencv_face_detector.pbtxt";
string faceModel = "model/opencv_face_detector_uint8.pb";
//年龄模型
string ageProto = "model/age_deploy.prototxt";
string ageModel = "model/age_net.caffemodel";
//性别模型
string genderProto = "model/gender_deploy.prototxt";
string genderModel = "model/gender_net.caffemodel";
//均值
Scalar MODEL_MEAN_VALUES = Scalar(78.4263377603, 87.7689143744, 114.895847746);
//年龄段标签
vector<string> ageList = { "(0-2)", "(4-6)", "(8-12)", "(15-20)", "(25-32)",
"(38-43)", "(48-53)", "(60-100)" };
//性别标签
vector<string> genderList = { "Male", "Female" };
//导入网络
Net ageNet = cv::dnn::readNet(ageProto, ageModel);
Net genderNet = cv::dnn::readNet(genderProto, genderModel);
Net faceNet = cv::dnn::readNetFromTensorflow(faceModel, faceProto);
//打开摄像头
VideoCapture cap;
cap.open(0);
if (cap.isOpened())
{
cout << "camera is opened!" << endl;
}
else
{
return 0;
}
int padding = 20;
while (waitKey(1) < 0)
{
// read frame 读图
Mat frame;
cap.read(frame);
if (frame.empty())
{
waitKey();
break;
}
frame = imread("./images/couple1.jpg");
//人脸坐标
vector<vector<int>> bboxes;
//人脸检测结果图
Mat frameFace;
//人脸定位
//tie()函数解包frameFace和bboxes
tie(frameFace, bboxes) = getFaceBox(faceNet, frame, 0.7);
//人脸判断
if (bboxes.size() == 0)
{
cout << "No face detected, checking next frame." << endl;
continue;
}
//逐个提取人脸检测
for (auto it = begin(bboxes); it != end(bboxes); ++it)
{
//框选人脸
Rect rec(it->at(0) - padding, it->at(1) - padding, it->at(2) - it->at(0) + 2 * padding, it->at(3) - it->at(1) + 2 * padding);
//避免人脸框选超过图像边缘
rec.width = ((rec.x + rec.width) > frame.cols) ? (frame.cols - rec.x - 1) : rec.width;
rec.height = ((rec.y + rec.height) > frame.rows) ? (frame.rows - rec.y - 1) : rec.height;
// take the ROI of box on the frame,原图中提取人脸
Mat face = frame(rec);
//性别检测
Mat blob;
blob = blobFromImage(face, 1, Size(227, 227), MODEL_MEAN_VALUES, false);
genderNet.setInput(blob);
// string gender_preds; 获取前向传播softmax结果
vector<float> genderPreds = genderNet.forward();
// find max element index max_element用于找寻最大值
// distance function does the argmax() work in C++ distance返回最大值和第一个值下标的距离
int max_index_gender = std::distance(genderPreds.begin(), max_element(genderPreds.begin(), genderPreds.end()));
//获得检测结果
string gender = genderList[max_index_gender];
cout << "Gender: " << gender << endl;
//年龄识别
ageNet.setInput(blob);
vector<float> agePreds = ageNet.forward();
// finding maximum indicd in the age_preds vector 找到年龄预测最大下表
int max_indice_age = std::distance(agePreds.begin(), max_element(agePreds.begin(), agePreds.end()));
string age = ageList[max_indice_age];
cout << "Age: " << age << endl;
// label 输出标签
string label = gender + ", " + age;
//在人脸定位图上显示结果
cv::putText(frameFace, label, Point(it->at(0), it->at(1) - 15), cv::FONT_HERSHEY_SIMPLEX, 0.9, Scalar(0, 255, 255), 2, cv::LINE_AA);
}
//保存结果
imshow("Frame", frameFace);
imwrite("out.jpg", frameFace);
}
}
python版本:
# Import required modules
import cv2 as cv
import time
import argparse
def getFaceBox(net, frame, conf_threshold=0.7):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
return frameOpencvDnn, bboxes
parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
args = parser.parse_args()
faceProto = "age_gender/model/opencv_face_detector.pbtxt"
faceModel = "age_gender/model/opencv_face_detector_uint8.pb"
ageProto = "age_gender/model/age_deploy.prototxt"
ageModel = "age_gender/model/age_net.caffemodel"
genderProto = "age_gender/model/gender_deploy.prototxt"
genderModel = "age_gender/model/gender_net.caffemodel"
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)
# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(args.input if args.input else 0)
padding = 20
while cv.waitKey(1) < 0:
# Read frame
t = time.time()
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
frameFace, bboxes = getFaceBox(faceNet, frame)
if not bboxes:
print("No face Detected, Checking next frame")
continue
for bbox in bboxes:
# print(bbox)
face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]
blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
# print("Gender Output : {}".format(genderPreds))
print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
print("Age Output : {}".format(agePreds))
print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
label = "{},{}".format(gender, age)
cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
cv.imshow("Age Gender Demo", frameFace)
# cv.imwrite("age-gender-out-{}".format(args.input),frameFace)
print("time : {:.3f}".format(time.time() - t))
参考
https://www.learnopencv.com/age-gender-classification-using-opencv-deep-learning-c-python/
[OpenCV实战]1 基于深度学习识别人脸性别和年龄的更多相关文章
- 基于深度学习的人脸性别识别系统(含UI界面,Python代码)
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...
- [OpenCV实战]15 基于深度学习的目标跟踪算法GOTURN
目录 1 什么是对象跟踪和GOTURN 2 在OpenCV中使用GOTURN 3 GOTURN优缺点 4 参考 在这篇文章中,我们将学习一种基于深度学习的目标跟踪算法GOTURN.GOTURN在Caf ...
- [OpenCV实战]5 基于深度学习的文本检测
目录 1 网络加载 2 读取图像 3 前向传播 4 处理输出 3结果和代码 3.1结果 3.2 代码 参考 在这篇文章中,我们将逐字逐句地尝试找到图片中的单词!基于最近的一篇论文进行文字检测. EAS ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- [OpenCV实战]12 使用深度学习和OpenCV进行手部关键点检测
目录 1 背景 2 实现 3 结果和代码 4 参考 手部关键点检测是在手指上找到关节以及在给定图像中找到指尖的过程.它类似于在脸部(面部关键点检测)或身体(人体姿势估计)上找到关键点.但是手部检测不同 ...
- 基于深度学习的人脸识别系统Win10 环境安装与配置(python+opencv+tensorflow)
一.需要下载的软件.环境及文件 (由于之前见识短浅,对Anaconda这个工具不了解,所以需要对安装过程做出改变:就是Python3.7.2的下载安装是可选的,因为Anaconda已经为我们解决Pyt ...
随机推荐
- MatrixOne从入门到实战04——MatrixOne的连接和建表
MatrixOne从入门到实战--MatrixOne的连接和建表 前景回顾 前几篇文章,为大家介绍了MatrixOne这个产品,以及编译.部署MatrixOne的服务. 直通车: MatrixOne从 ...
- java中list集合怎么判断是否为空
首先看下面代码 @RequestMapping("/getCatlist") public String getCatlist(HttpSession session,HttpSe ...
- 使用工厂方法模式设计能够实现包含加法(+)、减法(-)、乘法(*)、除法(/)四种运算的计算机程序,要求输入两个数和运算符,得到运算结果。要求使用相关的工具绘制UML类图并严格按照类图的设计编写程序实
2.使用工厂方法模式设计能够实现包含加法(+).减法(-).乘法(*).除法(/)四种运算的计算机程序,要求输入两个数和运算符,得到运算结果.要求使用相关的工具绘制UML类图并严格按照类图的设计编写程 ...
- 二十九、Helm常用命令
# 创建一个chart范例 helm create HELM-NAME # 检查chart语法 helm lint ./HELM-NAME # 使用默认chart部署到k8s helm install ...
- Java线程未捕获异常处理 UncaughtExceptionHandler
当一个线程在执行过程中抛出了异常,并且没有进行try..catch,那么这个线程就会终止运行.在Thread类中,提供了两个可以设置线程未捕获异常的全局处理器,我们可以在处理器里做一些工作,例如将异常 ...
- miniconda使用
基本指令 conda create -n xxx python=3.7 // 创建Python3.7的名为xxx虚拟环境 conda env list // 显示所有的虚拟环境 conda activ ...
- Java代码审计sql注入
java_sec_code 该项目也可以叫做Java Vulnerability Code(Java漏洞代码). 每个漏洞类型代码默认存在安全漏洞(除非本身不存在漏洞),相关修复代码在注释里.具体可查 ...
- SpringBoot 08: SpringBoot综合使用 MyBatis, Dubbo, Redis
业务背景 Student表 CREATE TABLE `student` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(255) COL ...
- hwlog----types.go
// Copyright(C) 2021. Huawei Technologies Co.,Ltd. All rights reserved.// Package hwlog provides the ...
- 你认识的C# foreach语法糖,真的是全部吗?
本文的知识点其实由golang知名的for循环陷阱发散而来, 对应到我的主力语言C#, 其实牵涉到闭包.foreach.为了便于理解,我重新组织了语言,以倒叙结构行文. 先给大家提炼出一个C#题:观察 ...