本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

  大家好我是费老师,matplotlib作为数据可视化的强力工具,可以帮助我们自由创作各式各样的数据可视化作品,其中matplotlib.pyplot.table模块就专门用于绘制表格,但是由于参数复杂,且默认样式单一简陋,想基于它绘制出美观的表格需要花费不少功夫。

  而我最近发现的一个基于matplotlib的第三方库plottable,用它来生成数据表格图既简单又美观,今天的文章中费老师我就来带大家学习它的常用方法~

2 基于plottable绘制漂亮的表格

  使用pip install plottable完成安装后,我们先从一个简单的例子了解其基础的使用方式:

2.1 从简单例子出发

  plottable的基础使用很简单,在已有数据框的基础上,直接调用plottable中的Table模块即可:

  渲染出的表格图如下:

2.2 plottable的常用方法

  了解到plottable的基础用法后,接下来我们来学习如何添加一些常用参数来对表格进行美化:

2.2.1 控制表格奇数偶数行底色

  通过在Table()中设置参数odd_row_coloreven_row_color,我们可以传入matplotlib中合法的色彩值进行表格奇数偶数行底色的设置:

2.2.2 控制表头单元格与数据单元格样式

  通过Table()中的参数col_label_cell_kwcell_kw,我们可以分别对表头区域单元格、数据区域单元格进行样式设置,接受matplotlib.patches.Rectangle全部可用参数,例如:

2.2.3 调节单元格文字样式

  通过参数textprops我们可以对全部单元格的文字样式进行控制:

2.2.4 配置行分割线

  通过bool型参数col_label_dividerfooter_dividerrow_dividers可以分别设置是否为表头、表格尾部、数据行绘制分割线:

  而通过参数col_label_divider_kwfooter_divider_kwrow_divider_kw则可以分别控制各个部分分割线的样式,支持plt.plot中全部参数:

2.2.5 基于ColDef的列样式细粒度设置

  plottable中最强大的地方在于,其通过配置由plottable.ColDef对象列表构成的column_definitions参数,可细粒度地对每一列进行自由的样式定义,其中每个ColDef()对象通过参数name与列名进行对应,常见的用法有:

  • 分别设置不同字段的宽度比例系数

  以每列的默认宽度为1,可以分别为不同列调整宽度:

  • 分别设置不同字段的文本对齐方式

  每个ColDef对象都可设置textprops参数,基于此可以实现为不同字段定义水平对齐方式:

  • 分别为不同字段设置数值色彩映射

  通过为ColDef设置参数cmaptext_cmap,我们可以分别基于对应列的数值,对其单元格底色或字体颜色进行值映射:

  • 为字段创建分组展示

  通过为若干个ColDef设置相同的group参数,我们可以为具有相同group参数的字段添加分组标识:

  • 为指定字段绘制列边框

  通过为ColDef设置参数border,我们可以决定如何绘制不同字段的列边框:

  除了本文所述的部分功能外,plottable还有很多高级进阶的使用方法,譬如单元格图片渲染、自定义单元格绘制内容等,下面的几个例子就是基于plottable创作的:

https://plottable.readthedocs.io/en/latest/example_notebooks/wwc_example.html

https://plottable.readthedocs.io/en/latest/example_notebooks/bohndesliga_table.html

https://plottable.readthedocs.io/en/latest/example_notebooks/plot_example.html

https://plottable.readthedocs.io/en/latest/example_notebooks/heatmap.html

  更多用法请移步官网https://plottable.readthedocs.io/


  以上就是本文的全部内容,欢迎在评论区与我进行讨论~

(数据科学学习手札149)用matplotlib轻松绘制漂亮的表格的更多相关文章

  1. (数据科学学习手札98)纯Python绘制满满艺术感的山脊地图

    本文示例代码及附件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 下面的这幅图可能很多读者朋友们都看到过,这 ...

  2. (数据科学学习手札133)利用geopandas绘制拓扑着色地图

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在绘制某些地图时,为了凸显出每个独立的 ...

  3. (数据科学学习手札90)Python+Kepler.gl轻松制作时间轮播图

    本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 Kepler.gl作为一款强大的开源地理信 ...

  4. (数据科学学习手札55)利用ggthemr来美化ggplot2图像

    一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原 ...

  5. (数据科学学习手札40)tensorflow实现LSTM时间序列预测

    一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...

  6. (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线

    1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...

  7. (数据科学学习手札75)基于geopandas的空间数据分析——坐标参考系篇

    本文对应代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的数据结 ...

  8. (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)

    一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...

  9. (数据科学学习手札49)Scala中的模式匹配

    一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...

  10. (数据科学学习手札47)基于Python的网络数据采集实战(2)

    一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...

随机推荐

  1. 安装zabbix-agent2之ansible-playbook

    zabbix被监控端安装zabbix-agent2之ansible-playbook --- - name: install agent hosts: all vars: server_host: & ...

  2. ES6 学习笔记(十一)迭代器和生成器函数

    1.前言 JavaScript提供了许多的方法来获取数组或者对象中的某个元素或者属性(迭代).从以前的for循环到之后的filter.map再到后来的for...in和for...of的迭代机制.只要 ...

  3. Day03.2:Java的基础语法

    Java基础语法 注释 (注释不会被运行,仅仅作为解释或笔记提供给作者帮助回忆) 单行注释格式:// 多行注释格式: /**/ 文档注释格式:/** */ 示例图 标识符 概念:所有的组成部分都需要名 ...

  4. VMware ESXi 8.0 SLIC 2.6 & macOS Unlocker (Oct 2022 GA)

    ESXi 8.0.0 GA (General Availability) 请访问原文 VMware ESXi 8.0 SLIC 2.6 & macOS Unlocker (Oct 2022 G ...

  5. Perl语言中一些内置变量等,$x、qw、cmp、eq、ne等

    转载 Perl语言中一些内置变量等,$x.qw.cmp.eq.ne等 字母 符号 释义 eq  = = equal(等于) ne != not equal(不等于) cmp 比较 qq  " ...

  6. 国产图形化的msf——Viper初体验

    目录 免责声明: Viper简介 安装 使用 免责声明: 本文章仅供学习和研究使用,严禁使用该文章内容对互联网其他应用进行非法操作,若将其用于非法目的,所造成的后果由您自行承担,产生的一切风险与本文作 ...

  7. xmind下载安装破解版激活教程思维导图软件获取

    1.xmind下载解压压缩包就可以看到里面的文件,然后双击安装文件就可以开始安装了 2.安装Xmind程序双击之后会出现下面的流程,照着截图操作,不要乱点哈 切记切记!!这一步直接点击next,不要修 ...

  8. 安装kali linux(干货)

    安装kali 一. 准备工具 1. VMware Workstation Pro https://www.vmware.com/cn/products/workstation-pro/workstat ...

  9. Day17.1:静态与非静态的详解

    静态与非静态 静态方法--类方法 是以static为关键词,从属于类,与类共生 public class Students{//class修饰的是一个类,所以这是一个学生类 public static ...

  10. DTSE Tech Talk 第13期:Serverless凭什么被誉为未来云计算范式?

    摘要:在未来,云上交付模式会逐步从Serverful为主转向Serverless为主. 本文分享自华为云社区<DTSE Tech Talk 第13期:Serverless凭什么被誉为未来云计算范 ...