题目

https://www.luogu.com.cn/problem/P4726

思路

(略)

是个板题,但是包含了很多多项式的基础板子,适合用来练手。

据说递归版的好写(好抄),但是我猜测和fft类似,迭代版的应该常数会小一点。

而且迭代一直倍增,多项式长度一直是2的次幂,感觉也更好处理。

另外就是多项式细节很多,记得清空啥的qwq。

代码

点击查看代码
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define mod 998244353
#define maxn 400010
#define ll long long
using namespace std;
int pos[maxn];
ll A[maxn],B[maxn],C[maxn],w[maxn],D[maxn],E[maxn];
ll qpow(ll x,int p){
ll base,ans;
for(base=x,ans=1;p;p>>=1,base=base*base%mod){
if(p&1) ans=ans*base%mod;
}
return ans;
}
ll inv(ll x){
return qpow(x,mod-2);
}
void NTT(ll *L,int N,int type,int lg){
int i,j,t,d;
for(i=0;i<N;++i) pos[i]=pos[i>>1]>>1|((1&i)<<lg-1);
w[0]=1,w[1]=type>0?qpow(3,(mod-1)>>lg):inv(qpow(3,(mod-1)>>lg));
for(i=2;i<N;++i) w[i]=w[i-1]*w[1]%mod;
for(i=0;i<N;++i){
if(pos[i]>i) swap(L[i],L[pos[i]]);
}
for(t=1,d=N>>1;t<N;d>>=1,t<<=1){
for(i=0;i<N;i+=t<<1){
for(j=0;j<t;++j){
ll tmp=w[j*d]*L[i+j+t]%mod;
L[i+j+t]=(L[i+j]+mod-tmp)%mod;
L[i+j]=(L[i+j]+tmp)%mod;
}
}
}
}
void poly_diff(ll *L,int N){
for(int i=0;i<N;++i) L[i]=L[i+1]*(i+1)%mod;
L[N-1]=0;
}
void poly_int(ll *L,int N){
for(int i=N;i>0;--i) L[i]=L[i-1]*inv(i)%mod;
L[0]=0;
}
void poly_inv(ll *L1,ll *L2,int N,int lg){
int i,len,j;
L2[0]=1;
for(i=0,len=1;i<=lg;++i,len<<=1){
for(j=0;j<(len<<1);++j) C[j]=j<len?L1[j]:0;
NTT(C,len<<1,1,i+1);NTT(L2,len<<1,1,i+1);
for(j=0;j<(len<<1);++j) L2[j]=(mod+2-L2[j]*C[j]%mod)%mod*L2[j]%mod;
NTT(L2,len<<1,-1,i+1);
for(j=0;j<len;++j) L2[j]=L2[j]*inv(len<<1)%mod;
for(j=len;j<(len<<1);++j) L2[j]=0;
}
for(i=N;i<(1<<lg);++i) L2[i]=0;
}
void poly_ln(ll *L1,ll *L2,int N,int lg){
int i;
for(i=0;i<(N<<1);++i) D[i]=i<N?L1[i]:0;
poly_diff(D,N);
for(i=0;i<(N<<1);++i) L2[i]=0;
poly_inv(L1,L2,N,lg);
NTT(D,N<<1,1,lg+1);NTT(L2,N<<1,1,lg+1);
for(i=0;i<(N<<1);++i) L2[i]=L2[i]*D[i]%mod;
NTT(L2,N<<1,-1,lg+1);
for(i=0;i<(N<<1);++i) L2[i]=L2[i]*inv(N<<1)%mod;
poly_int(L2,N);
}
void poly_exp(ll *L1,ll *L2,int N,int lg){
int i,j,len;
L2[0]=1;
for(i=0,len=1;i<=lg;++i,len<<=1){
poly_ln(L2,E,len,i);
for(j=len;j<(len<<1);++j) E[j]=0;
for(j=0;j<(len<<1);++j) C[j]=j<len?L1[j]:0;
NTT(L2,len<<1,1,i+1);NTT(E,len<<1,1,i+1);NTT(C,len<<1,1,i+1);
for(j=0;j<(len<<1);++j) L2[j]=(1-E[j]+C[j]+mod)%mod*L2[j]%mod;
NTT(L2,len<<1,-1,i+1);
for(j=0;j<(len<<1);++j) L2[j]=L2[j]*inv(len<<1)%mod;
}
}
int main(){
int i,n,m,u;
scanf("%d",&n);
for(m=1,u=0;m<n;m<<=1,++u);
for(i=0;i<n;++i) scanf("%lld",&A[i]);
poly_exp(A,B,m,u);
for(i=0;i<n;++i) printf("%lld ",B[i]);
// system("pause");
return 0;
}

洛谷P4726 【模板】多项式指数函数(多项式 exp)的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. [洛谷P4726]【模板】多项式指数函数

    题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv e^{A(x)}$. 题解:(by Weng_weijie) 泰勒展 ...

  3. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  4. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  5. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  6. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  7. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  8. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  9. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  10. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

随机推荐

  1. python + mysql +djagno +unittest 实现WEB、APP UI自动化测试平台--------(一)基础表

    from django.db import models # Create your models here. class DictConfig(models.Model): "" ...

  2. 2、Navicat安装提示报错

    问题描述:激活navicat15的注册码时报出"rsa public key not find"错误原因:没有生成破解版的RegPrivateKey.pem文件解决方案:重新安装N ...

  3. GitHub - 电脑经常无法访问GitHub页面

    来自这里 1.打开Dns检测|Dns查询 - 站长工具2.在检测输入栏中输入http://github.com官网3.把检测列表里的TTL值最小的IP输入到host里,并对应写上github官网域名. ...

  4. [R语言] ggplot2入门笔记3—通用教程如何自定义ggplot2

    通用教程简介(Introduction To ggplot2) 代码下载地址 以前,我们看到了使用ggplot2软件包制作图表的简短教程.它很快涉及制作ggplot的各个方面.现在,这是一个完整而完整 ...

  5. Docker 搭建 Wordpress 个人博客

    Docker安装 更新软件库(可选),将所用到的yum软件更新到最新 yum -y update docker一键安装命令: curl -fsSL https://get.docker.com | b ...

  6. 多项式 I:拉格朗日插值与快速傅里叶变换

    1. 复数和单位根 前置知识:弧度制,三角函数. 1.1 复数的引入 跳出实数域 \(\mathbb R\),我们定义 \(i ^ 2 = -1\),即 \(i = \sqrt {-1}\),并在此基 ...

  7. Redis缓存何以一枝独秀?(2) —— 聊聊Redis的数据过期、数据淘汰以及数据持久化的实现机制

    大家好,又见面了. 本文是笔者作为掘金技术社区签约作者的身份输出的缓存专栏系列内容,将会通过系列专题,讲清楚缓存的方方面面.如果感兴趣,欢迎关注以获取后续更新. 上一篇文章中呢,我们简单的介绍了下Re ...

  8. 问一个 Windows 窗口的 Capture 问题

    好久没写了,上来先问一个问题...羞射... 有 A.B 两个窗口,A 是 B 的 Owner,B 不激活不抢焦点.在 B 的 WM_LBUTTONDOWN 的时候,设置 A 窗口为 Capture: ...

  9. 看我是如何用C#编写一个小于8KB的贪吃蛇游戏的

    译者注:这是Michal Strehovský大佬的一篇文章,他目前在微软.NET Runtime团队工作,主要是负责.NET NativeAOT功能的开发.我在前几天看到这篇文章,非常喜欢,虽然它的 ...

  10. 【深入浅出Seata原理及实战】「入门基础专题」探索Seata服务的AT模式下的分布式开发实战指南(2)

    承接上文 上一篇文章说到了Seata 为用户提供了 AT.TCC.SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案.那么接下来我们将要针对于AT模式下进行分布式事务开发的原理进行介绍以及 ...