\(\mathrm{x}_{i}\) 表示变化前的齐次坐标

\(\mathbf{x}_{i}^{\prime}\) 表示变化后的齐次坐标

我们需要求到一个 \(3\times3\) 的变换矩阵 \(\mathrm{H}\) , 使得

\[\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\mathbf{0}
\]

令 \(\mathbf{h}^{j\top}\) 表示 \(\mathrm{H}\) 的第 \(j\) 行 , 即 \(\mathrm{H}=[~\mathbf{h}^{1\top};~ \mathbf{h}^{2\top}; ~ \mathbf{h}^{3\top}~]\)

\[\mathrm{H} \mathbf{x}_{i}=\left(\begin{array}{c}
\mathbf{h}^{1 \top} \mathbf{x}_{i} \\
\mathbf{h}^{2 \top} \mathbf{x}_{i} \\
\mathbf{h}^{3 \top} \mathbf{x}_{i}
\end{array}\right)
\]

对 \(\mathbf{x}_{i}^{\prime}\) 我们写成 \(\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top}\)

则 \(\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}\) 可改写成

\[\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\left(\begin{array}{c}
y_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}
\end{array}\right)
\]

由于 \(\mathbf{h}^{j\top}\mathrm{x}_i=\mathrm{x}_{i}^{\top}\mathbf{h}^j\), 我们可以将上式改写成

\[\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{\top} & x_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}
\]

简写成 \(\tilde{A}_i\mathbf{h}=\mathbf{0}\), \(\tilde{A}_i\) 是 \(3\times9\) 矩阵, \(\mathbf{h}\) 是 9 维向量

由于 \(\tilde{A}_i\) 的前两行加到第三行会导致第三行变为零, 所以 \(\tilde{A}_i\) 只有前两行有效

所以化简为

\[\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}
\]

记成 \({A}_i\mathbf{h}=\mathbf{0}\)

由于 \(\mathbf{h}\) 有 9 个未知量, 但只有8条方程, 因此 \(\mathbf{h}\) 会有无穷个解, 这时我们只需加入限定条件 \(||\mathbf{h}||=1\) 即可将解固定

引用: Multiple View Geometry in Computer Vision Second Edition

四点DLT (Direct Linear Transformation) 算法的更多相关文章

  1. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  3. 【线性代数】7-2:线性变化的矩阵(The Matrix of a Linear Transformation)

    title: [线性代数]7-2:线性变化的矩阵(The Matrix of a Linear Transformation) categories: Mathematic Linear Algebr ...

  4. 【线性代数】7-1:线性变换思想(The Idea of a Linear Transformation)

    title: [线性代数]7-1:线性变换思想(The Idea of a Linear Transformation) categories: Mathematic Linear Algebra k ...

  5. 数据挖掘入门系列教程(四点五)之Apriori算法

    目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联 ...

  6. DLT(Direct Linear Transform)算法

    1.DLT定义            DLT是一个 用于解决包含尺度问题的最小二乘问题 的算法.           DLT解决问题的标准形式为:                            ...

  7. linear map (also called a linear mapping, linear transformation or, in some contexts, linear function

    Linear map - Wikipedia https://en.wikipedia.org/wiki/Linear_map

  8. OpenCV 之 透视 n 点问题

    透视 n 点问题,源自相机标定,是计算机视觉的经典问题,广泛应用在机器人定位.SLAM.AR/VR.摄影测量等领域 1  PnP 问题 1.1  定义 已知:相机的内参和畸变系数:世界坐标系中,n 个 ...

  9. [zt]摄像机标定(Camera calibration)笔记

    http://www.cnblogs.com/mfryf/archive/2012/03/31/2426324.html 一 作用建立3D到2D的映射关系,一旦标定后,对于一个摄像机内部参数K(光心焦 ...

  10. ORB_SLAM2 源码阅读 ORB_SLAM2::Initializer

    ORB_SLAM2::Initializer 用于单目情况下的初始化. Initializer 的构造函数中传入第一张影像,这张影像被称作 reference frame(rFrame).在获得第二张 ...

随机推荐

  1. [常用工具] dlib编译调用指南

    dlib是一个C++工具包(dLIB中也有Python接口,但是主要编程语言为C++),包含绝大多数常用的机器学习算法,许多图像处理算法和深度学习算法,被工业界和学术界广泛应用于机器人.嵌入式设备.移 ...

  2. 诗词API

    1.js依赖 /** * 今日诗词V2 JS-SDK 1.2.2 * 今日诗词API 是一个可以免费调用的诗词接口:https://www.jinrishici.com */ !function(e) ...

  3. P5380 [THUPC2019]鸭棋

    题面 查看题面 题目背景 鸭棋是一种风靡鸭子界的棋类游戏.事实上,它与中国象棋有一些相似之处,但规则不尽相同.在这里,我们将为你介绍鸭棋的规则. 鸭棋在一个 \(10\times 9\)(\(10\) ...

  4. angular Ionic CLI连接数据获取数据无限滚动

  5. webpack配置less以及js中引入的图片问题

    1.问题重现 当我做了这个配置以后,发现less里的图片可以正常展现到页面,但是js里的图片以及其他文件都不能正常展现,都报404 原始配置如下: // 如果有額外的.babelrc配置的話就可以使用 ...

  6. DVWA系列3:CSRF

    DVWA系列3:CSRF 前言 CSRF(Cross-site request forgery),即跨站请求伪造,是一种挟制用户在当前已登录的Web应用程序上执行非本意的操作的攻击方法. 比如说,用户 ...

  7. wixtoolset visualstudio 2017打包流程(1)

    第一步: 使用wix提供的 heat.exe 工具生成后缀为 wsx 的配置文件.   heat.exe dir ".\binr" -dr INSTALLFOLDER -cg Pr ...

  8. pycharm设置python头文件模版

    钢铁知识库,一个学习python爬虫.数据分析的知识库.人生苦短,快用python. 使用pycharm创建python文件时候,有时候需要自动生成想要的文件头,如何生成呢? 只需要以下几步: 在fi ...

  9. Python第三方库arrow

    Python第三方库arrow https://pypi.org/project/arrow/ 简介 处理时间日期的一个第三方库 Arrow is a Python library that offe ...

  10. hashlib加密、subprocess、logging日志模块

    1.hashlib加密模块 1.加密:将明文数据处理成密文数据,让人无法看懂 2.为什么加密:保证数据的安全 3.如何判断数据是否加密:如果是一长串没有规律的字符串(数字.字母.符号)那么数据被加密 ...