基于AIE的贵州省FVC提取
植被覆盖度获取
植被覆盖度(Fractional Vegetation Cover,FVC),是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比,范围在 [0,1] 之间。FVC 是刻画地表植被覆盖的重要参数,能够直观的反映一个地区绿的程度,是反应植被生长状态的重要指标,在植被变化、生态环境研究、水土保持、城市宜居等方面问题研究中起到重要作用。本案例以 Landsat-8 数据为例,计算贵州省区域的 FVC 指数。
初始化环境
import aie
aie.Authenticate()
aie.Initialize()
Landsat-8 数据检索
指定区域、时间、云量检索 Landsat-8 ,并对数据进行去云处理。
def removeLandsatCloud(image):
cloudShadowBitMask = (1 << 4)
cloudsBitMask = (1 << 3)
qa = image.select('QA_PIXEL')
mask = qa.bitwiseAnd(aie.Image(cloudShadowBitMask)).eq(aie.Image(0)).And(qa.bitwiseAnd(aie.Image(cloudsBitMask)).eq(aie.Image(0)))
return image.updateMask(mask)
feature_collection = aie.FeatureCollection('China_Province') \
.filter(aie.Filter.eq('province', '贵州省'))
geometry = feature_collection.geometry()
dataset = aie.ImageCollection('LANDSAT_LC08_C02_T1_L2') \
.filterBounds(geometry) \
.filterDate('2021-05-01', '2021-10-31') \
.filter(aie.Filter.lte('eo:cloud_cover', 30.0))
print(dataset.size().getInfo())
dataset = dataset.map(removeLandsatCloud)
image = dataset.median()
裁剪影像
image = image.clip(geometry)
计算 NDVI 指数
ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']).rename(['NDVI'])
ndvi_vis = {
'min': -0.2,
'max': 0.6,
'palette': ['#d7191c', '#fdae61', '#ffffc0', '#a6d96a', '#1a9641']
}
map = aie.Map(
center=ndvi.getCenter(),
height=800,
zoom=6
)
map.addLayer(
ndvi,
ndvi_vis,
'NDVI',
bounds=ndvi.getBounds()
)
map
定义植被覆盖度算法
使用像元二分模型法进行 FVC 估算。 利用 aie.Reducer.histogram 实现输入影像的直方图统计。通过 numpy 调用数组运算,计算生长季的 NDVI 像元百分比统计中 5% 位置 NDVI 值作为土壤部分 NDVIsoil 、95% 位置的 NDVI 值作为植被部分 NDVIveg ,并通过 FVC = (NDVI - NDVIsoil)/ (NDVIveg - NDVIsoil ) 计算 FCV ,得出 FVC 。
import numpy as np
import pandas as pd
def calculateFVC(image, scale):
histogram = image.reduceRegion(aie.Reducer.histogram(2000), None, scale)
histogram_info = histogram.getInfo()
# print(histogram_info)
bucketKey = histogram_info['NDVI_range']
bucketValue = histogram_info['NDVI_counts']
key = np.array(bucketValue)
accSum = np.cumsum(key)
# print(accSum[20])
# print(accSum[-1])
accPercent = accSum / accSum[-1]
p5 = np.searchsorted(accPercent, 0.5)
min_ndvi = bucketKey[p5 + 1]
# print(min_ndvi)
p95 = np.searchsorted(accPercent, 0.95)
max_ndvi = bucketKey[p95]
# print(max_ndvi)
higher_ndvi_mask = image.gt(aie.Image(max_ndvi))
lower_ndvi_mask = image.lt(aie.Image(min_ndvi))
middle_ndvi_mask = aie.Image(1).subtract(higher_ndvi_mask).subtract(lower_ndvi_mask)
tmp = image.subtract(aie.Image(min_ndvi)).divide(aie.Image(max_ndvi).subtract(aie.Image(min_ndvi)))
FVC = aie.Image(1).multiply(higher_ndvi_mask).add(aie.Image(0).multiply(lower_ndvi_mask)).add(tmp.multiply(middle_ndvi_mask))
return FVC
数据可视化
FVC = calculateFVC(ndvi, 1000)
vis_params = {
'min': 0,
'max': 1,
'palette': [
'#a1a1a1', '#008000'
]
}
map.addLayer(
FVC,
vis_params,
'fvc',
bounds=ndvi.getBounds()
)
map
导出数据
task = aie.Export.image.toAsset(FVC, 'FVC_export_result', 100)
task.start()
后记
AIE进行遥感云计算的时候还是很方便,可能刚刚出来,很多地方还是需要完善,这个案例里面,我导出数据以后要到ArcGIS里面再出来一下下。接下来,我利用自然间断法分成了五类,然后再统计这五类的面积,这ArcGIS操作都很简单了,这里就不多说,还有就是阿里云的小哥哥特别有耐心,特别负责任,计算也很强。
本案例主要引用AIE官方案例。
基于AIE的贵州省FVC提取的更多相关文章
- 基于TF-IDF的新闻标签提取
基于TF-IDF的新闻标签提取 1. 新闻标签 新闻标签是一条新闻的关键字,可以由编辑上传,或者通过机器提取.新闻标签的提取主要用于推荐系统中,所以,提取的准确性影响推荐系统的有效性.同时,对于将标签 ...
- Attention-based Extraction of Structured Information from Street View Imagery:基于注意力的街景图像提取结构化信息
基于注意力的街景图像提取结构化信息 一种用于真实图像文本提取问题的TensorFlow模型. 该文件夹包含在FSNS数据集数据集上训练新的注意OCR模型所需的代码,以在法国转录街道名称. 您还可以使用 ...
- 基于 Python 的自动文本提取:抽象法和生成法的比较
我们将现有的 提取方法(Extractive)(如LexRank,LSA,Luhn和Gensim现有的TextRank摘要模块)与含有51个文章摘要对的Opinosis数据集进行比较.我们还尝试使用T ...
- 基于python的extract_msg模块提取outlook邮箱保存的msg文件中的附件
笔者保存了一些outlook邮箱中保存的一些msg格式的邮件文件,现需要将其中的附件提取出来, 当然直接在outlook中就可以另存附件,但outlook默认是不支持批量提取邮件中的附件的 思考过几种 ...
- [python] 基于词云的关键词提取:wordcloud的使用、源码分析、中文词云生成和代码重写
1. 词云简介 词云,又称文字云.标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思.常见于博客.微博 ...
- 基于tess4j的图片文字提取
1.文件结构目录 2.具体实现 ①添加maven依赖 <dependency> <groupId>net.sourceforge.tess4j</groupId> ...
- 我为开源做贡献,网页正文提取——Html2Article
为什么要做正文提取 一般做舆情分析,都会涉及到网页正文内容提取.对于分析而言,有价值的信息是正文部分,大多数情况下,为了便于分析,需要将网页中和正文不相干的部分给剔除.可以说正文提取的好坏,直接影响了 ...
- TextRank:关键词提取算法中的PageRank
很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank [ ...
- 关键词提取算法TextRank
很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank. ...
随机推荐
- Bert不完全手册6. Bert在中文领域的尝试 Bert-WWM & MacBert & ChineseBert
一章我们来聊聊在中文领域都有哪些预训练模型的改良方案.Bert-WWM,MacBert,ChineseBert主要从3个方向在预训练中补充中文文本的信息:词粒度信息,中文笔画信息,拼音信息.与其说是推 ...
- nodejs学习总结01
主流渲染引擎介绍1.渲染引擎又叫 排版引擎 或 浏览器内核 .(双内核:执行html和css的)2,主流的渲染引擎有**Chrome浏览器**:Blink引壁(WebKit的一个分支)**Safari ...
- ASP.NET Core 6框架揭秘实例演示[30]:利用路由开发REST API
借助路由系统提供的请求URL模式与对应终结点之间的映射关系,我们可以将具有相同URL模式的请求分发给与之匹配的终结点进行处理.ASP.NET的路由是通过EndpointRoutingMiddlewar ...
- placeholder 设置换行三种方式
在 html 中编写代码时保留代码换行 <textarea name="" id="" cols="30" rows="10 ...
- JavaScript基础回顾知识点记录6-操作元素样式和事件对象(介绍基本使用)
js 中 操作元素样式 通过js修改元素内联样式(设置和读取的都是内联样式) 获取当前元素显示的样式 <html> <head> <meta charset=" ...
- HTML引用CSS实现自适应背景图
链接图片背景代码 body {background: url('链接') no-repeat center 0;} 颜色代码 body{background:#FFF} 链接图片背景代码2 <b ...
- 【面试题】Vue中的$router 和 $route的区别
Vue中的$router 和 $route的区别 点击视频讲解更加详细 this.$route:当前激活的路由的信息对象.每个对象都是局部的,可以获取当前路由的 path, name, params, ...
- 免杀手法-tcp套字节传递shellcode学习
免杀手法-tcp套字节传递shellcode学习
- Android的Handler线程切换原理
Handler是我们在开发中经常会接触到的类,因为在Android中,子线程一般是不能更新UI的. 所以我们会使用Handler切换到主线程来更新UI,那Handler是如何做到实现不同线程之间的切换 ...
- KingbaseES 全局索引是否因为DDL操作而变为Unusable ?
前言 Oracle 在对分区做DDL操作时,会使分区全局索引失效,需要加上关键字update global indexes.KingbaseES 同样支持全局索引.那么,如果对分区表进行DDL操作,那 ...