4824: [Cqoi2017]老C的键盘

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 218  Solved: 171
[Submit][Status][Discuss]

Description

老 C 是个程序员。    
作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序
在某种神奇力量的驱使之下跑得非常快。小 Q 也是一个程序员。有一天他悄悄潜入了老 C 的家中,想要看看这个
键盘究竟有何妙处。他发现,这个键盘共有n个按键,这n个按键虽然整齐的排成一列,但是每个键的高度却互不相同
。聪明的小 Q 马上将每个键的高度用 1 ~ n 的整数表示了出来,得到一个 1 ~ n 的排列 h1, h2,..., hn 。为了
回去之后可以仿造一个新键盘(新键盘每个键的高度也是一个 1 ~ n 的排列),又不要和老 C 的键盘完全一样,小 Q
 决定记录下若干对按键的高度关系。作为一个程序员,小 Q 当然不会随便选几对就记下来,而是选了非常有规律的
一些按键对:对于 i =2,3, ... , n,小 Q 都记录下了一个字符<或者>,表示 h_[i/2] < h_i 或者h _[i/2] > h_i 
。于是,小 Q 得到了一个长度为n ? 1的字符串,开开心心的回家了。现在,小 Q 想知道满足他所记录的高度关系的
键盘有多少个。虽然小 Q 不希望自己的键盘和老 C 的完全相同,但是完全相同也算一个满足要求的键盘。答案可
能很大,你只需要告诉小 Q 答案 mod 1,000,000,007 之后的结果即可。
 

Input

输入共 1 行,包含一个正整数 n 和一个长度为 n ? 1 的只包含<和>的字符串,分别表示键
盘上按键的数量,和小 Q 记录的信息,整数和字符串之间有一个空格间隔。
 

Output

输出共 1 行,包含一个整数,表示答案 mod 1,000,000,007后的结果。    
 

Sample Input

5 <>><

Sample Output

3
共5个按键,第1个按键比第2个按键矮,第1个按键比第3个按键高,第2个按键比第4个
按键高,第2个按键比第5个按键矮。
这5个按键的高度排列可以是 2,4,1,3,5 , 3,4,1,2,5 , 3,4,2,1,5 。

HINT

 

Source

将原数列建成一颗二叉树。

对于一个节点i,f[i][j]表示节点在子树中排名为j的方案数。

转移的时候枚举每个子树中有多少个在它前面即可。

根据复杂度分析后可得时间复杂度为O(n^2)

 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#define ll long long
#define mod 1000000007
#define maxn 1001
using namespace std;
inline ll read() {
ll x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
struct data {int to,nxt,tp;}e[maxn*];
int head[maxn],cnt;
inline void add(int u,int v,int tp) {e[cnt].to=v;e[cnt].nxt=head[u];e[cnt].tp=tp;head[u]=cnt++;}
ll n,ans,jc[maxn],inv[maxn];
ll f[maxn][maxn],g[maxn][maxn],sz[maxn],t[maxn][maxn];
char s[maxn];
inline ll C(int x,int y){return jc[x]*inv[y]%mod*inv[x-y]%mod;}
void dp(int x) {
sz[x]=;f[x][]=;
if((x<<)<=n) add(x,x<<,s[x<<]=='>'?:);
if(((x<<)|)<=n) add(x,(x<<)|,s[(x<<)|]=='>'?:);
for(int i=head[x];i>=;i=e[i].nxt) {
int to=e[i].to;dp(to);
for(int j=sz[x];j>=;j--) {
for(int k=sz[to];k>=;k--) {
if(e[i].tp==) t[x][j+k]=(t[x][j+k]+f[to][k]*C(j+k-,k)%mod*C(sz[x]+sz[to]-j-k,sz[to]-k)%mod*f[x][j])%mod;
else t[x][j+k]=(t[x][j+k]+g[to][k+]*C(j+k-,k)%mod*C(sz[x]+sz[to]-j-k,sz[to]-k)%mod*f[x][j])%mod;
}
}
sz[x]+=sz[to];
for(int j=;j<=sz[x];j++) f[x][j]=t[x][j],t[x][j]=;
}
for(int i=sz[x];i>=;i--) g[x][i]=(g[x][i+]+f[x][i])%mod;
for(int i=;i<=sz[x];i++) f[x][i]=(f[x][i]+f[x][i-])%mod;
}
int main(){
memset(head,-,sizeof(head));
n=read();
scanf("%s",s+);
inv[]=inv[]=jc[]=jc[]=;
for(int i=;i<=n;i++) jc[i]=jc[i-]*i%mod,inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<=n;i++) inv[i]=inv[i]*inv[i-]%mod;
dp();
printf("%lld\n",f[][sz[]]);
return ;
}

[BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数的更多相关文章

  1. [BZOJ4824][CQOI2017]老C的键盘(树形DP)

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 193  Solved: 149[Submit][Statu ...

  2. BZOJ 4824 [Cqoi2017]老C的键盘 ——树形DP

    每一个限制条件相当于一条有向边, 忽略边的方向,就成了一道裸的树形DP题 同BZOJ3167 唯一的区别就是这个$O(n^3)$能过 #include <map> #include < ...

  3. [bzoj4824][Cqoi2017]老C的键盘

    来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...

  4. BZOJ4824 [Cqoi2017]老C的键盘 【树形dp】

    题目链接 BZOJ4824 题解 观察出题目中的关系实际上是完全二叉树的父子关系 我们设\(f[i][j]\)为以\(i\)为根的节点在其子树中排名为\(j\)的方案数 转移时,枚举左右子树分别有几个 ...

  5. [CQOI2017]老C的键盘

    [CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...

  6. [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘

    Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...

  7. bzoj 4824: [Cqoi2017]老C的键盘

    Description 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...

  8. Luogu P3757 [CQOI2017]老C的键盘

    题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...

  9. 洛谷 P3757 [CQOI2017]老C的键盘

    题面 luogu 题解 其实就是一颗二叉树 我们假设左儿子小于根,右儿子大于根 考虑树形\(dp\) \(f[u][i]\)表示以\(u\)为根的子树,\(u\)为第\(i\)小 那么考虑子树合并 其 ...

随机推荐

  1. js正则:两边字符固定,中间任意字符

    求些一个js正则!两边字符固定,中间任意字符.在一个长字符串里面匹配一小段,这一小段字符串开头和结尾都是固定的字符,就是中间是任意长度的字符.怎么写? /aa.+aa/ aa是你的固定字符,如果是反斜 ...

  2. 基于MeanShift的目标跟踪算法及实现

    这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法[matlab/c两个版本] csdn贴公式比较烦,原谅我直接截图了 ...

  3. 使用snmp4j实现Snmp功能(二)

    相关链接:Snmp学习笔记使用snmp4j实现Snmp功能(一)使用snmp4j实现Snmp功能(二)使用snmp4j实现Snmp功能(三) 前一篇文章讲了如何用snmp4j实现set和get的功能, ...

  4. ACE线程管理机制-并发控制

    ACE有若干可用于并发控制的类.这些类可划分为以下范畴: ACE Lock类属 ACE Guard类属 ACE Condition类属 ACE Synchronization类 由于篇幅较长,我分别写 ...

  5. 可以随时拿取spring容器中Bean的工具类

    前言 在Spring帮我们管理bean后,编写一些工具类的时候需要从容器中拿到一些对象来做一些操作,比如字典缓存工具类,在没有找到字典缓存时,需要dao对象从数据库load一次,再次存入缓存中.此时需 ...

  6. 《A First Course in Abstract Algebra with Applications》-chaper1-数论-关于素数

    由于笔者在别的专栏多次介绍过数论,这里在<抽象代数基础教程>的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”. 首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法. ...

  7. iOS tag的使用

    一.添加标记 (标记不能为0) UIButton *backBtn = [[UIButton alloc] initWithFrame:CGRectMake(,,,)]; backBtn.backgr ...

  8. IntentServicce;Looper;long-running task

    7. If you want to carry on a long-running task, what do you need to do? IntentService:Service Servic ...

  9. python keras YOLOv3实现目标检测

    1.连接 https://www.jianshu.com/p/3943be47fe84

  10. 使用JQGrid 问题汇总 不定时更新

    jqgrid左下角的复杂搜索框显示为下拉框样式searchoptions: { value: ": 全部; 1: 在用; 2: 报废", sopt: ['eq'] } jqgrid ...