Description

我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1。一个元素相邻的元素包括它本
身,及他上下左右的4个元素(如果存在)。
给定矩阵的行数和列数,请计算并输出一个和谐的矩阵。注意:所有元素为0的矩阵是不允许的。

Input

输入一行,包含两个空格分隔的整数m和n,分别表示矩阵的行数和列数。

Output

输出包含m行,每行n个空格分隔整数(0或1),为所求矩阵。测试数据保证有解。

Sample Input

4 4

Sample Output

0 1 0 0
1 1 1 0
0 0 0 1
1 1 0 1

数据范围
1 <=m, n <=40

Solution

咋感觉我写了三个高斯消元的题三个板子都长得不一样
讲真这个题不知道比1770那个题低到哪里去了(其实差不多)
会做那个题一定会做这个【认真脸
很明显这个还是构造01矩阵然后解异或方程组
只不过这个构造出来的矩阵是n*m的,n^3显然很吃力
那么我们把1770代码里的异或用bitset来搞常数就小很多了
听说bitset随便虐1e9?

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<bitset>
#define N (1600+100)
#define id(x,y) (x-1)*m+y
using namespace std; bitset<N>f[N];
int ans[N],n,m;
int dx[]={,,-,,,},dy[]={,,,,-,}; void Gauss(int n)
{
for (int i=; i<=n; ++i)
{
int num=i;
for (int j=i+; j<=n; ++j)
if (f[j][i]>f[num][i]) num=j;
if (num!=i) swap(f[i],f[num]); for (int j=i+; j<=n; ++j)
if (f[j][i]) f[j]^=f[i];//这里用bitset来搞常数好像很小
}
for (int i=n; i>=; --i)
{
if (!f[i][i]) ans[i]=;
else
{
for (int j=i+; j<=n; ++j)
f[i][n+]=f[i][n+]^(f[i][j]*ans[j]);
ans[i]=f[i][n+];
}
}
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
for (int k=; k<=; ++k)
{
int x=i+dx[k],y=j+dy[k];
if (x> && x<=n && y> && y<=m)
f[id(i,j)][id(x,y)]=;
}
Gauss(n*m);
for (int i=; i<=n; ++i)
{
for (int j=; j<=m-; ++j)
printf("%d ",ans[id(i,j)]);
printf("%d\n",ans[id(i,m)]);
}
}

BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)的更多相关文章

  1. P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)

    题意:构造一个$n*m$矩阵 使得每个元素和上下左右的xor值=0 题解:设第一行的每个元素值为未知数 可以依次得到每一行的值 然后把最后一行由题意条件 得到$m$个方程 高斯消元解一下 bitset ...

  2. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  3. [SDOI2010]外星千足虫 题解 高斯消元+bitset简介

    高斯消元 + bitset 简介: 高斯消元其实就是以加减消元为核心求唯一解.这道题还是比较裸的,可以快速判断出来.我们将每一只虫子看作一个未知数,这样根据它给出的 m 组方程我们可以高斯消元得出每一 ...

  4. 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1197  Solved: ...

  5. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  6. bzoj 1923 [Sdoi2010]外星千足虫(高斯消元+bitset)

    1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 634  Solved: 397[Submit][Status ...

  7. BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元+bitset

    BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结 ...

  8. 矩阵&&高斯消元

    矩阵运算: \(A\times B\)叫做\(A\)左乘\(B\),或者\(B\)右乘\(A\). 行列式性质: \(1.\)交换矩阵的两行(列),行列式取相反数. \(2.\)某一行元素都\(\ti ...

  9. POJ 1830 开关问题 【01矩阵 高斯消元】

    任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...

随机推荐

  1. [转]ASP.NET Web API基于OData的增删改查,以及处理实体间关系

    本文转自:http://www.cnblogs.com/darrenji/p/4926334.html 本篇体验实现ASP.NET Web API基于OData的增删改查,以及处理实体间的关系. 首先 ...

  2. 面向对象 OOP中的抽象类,接口以及多态

    [抽象类与抽象方法] 1.什么是抽象方法? 没有方法体{}的方法,必须使用abstract关键字修饰,这样的方法,我们称之为抽象方法. abstract function say() 2.什么是抽象类 ...

  3. IEnumerable Except

    // // 摘要: // 通过使用默认的相等比较器对值进行比较生成两个序列的差集. // // 参数: // first: // 一个 System.Collections.Generic.IEnum ...

  4. Cheatsheet: 2017 04.01 ~ 04.30

    Other ReactXP - A LIBRARY FOR BUILDING CROSS-PLATFORM APPS Merging vs. Rebasing Better Git configura ...

  5. 20个实用的javascript技巧及实践(一)

    在本篇文章中,我们将会向大家分享JavaScript开发中的小技巧.最佳实践和实用内容,不管你是前端开发者还是服务端开发者,都应该来看看这些编程的技巧总结,绝对会让你受益匪浅的. 文中所提供的代码片段 ...

  6. ArcGIS for JavaScript 关于路径开发的一些记录(三)

    最近被一个bug困扰了两天~ 我新发布了一个NAserver(路径分析服务),但是放在之前的代码里面发现不能生成路径.经过我的调试发现并没有代码并没有报错,并且能够返回所生成路径的Graphic la ...

  7. IE8下的怪异模式

    使用DWZ框架,老是出现点击button后在winxp IE8下出现新页面,经过检查后发现IE8下submit后,return false就不行了,必须使用window.event.returnVal ...

  8. 数据结构----线性表顺序和链式结构的使用(c)

    PS:在学习数据结构之前,我相信很多博友也都学习过一些语言,比如说java,c语言,c++,web等,我们之前用的一些方法大都是封装好的,就java而言,里面使用了大量的封装好的方法,一些算法也大都写 ...

  9. Android中如何在Eclipse中关联源代码?(图文)

    关联源代码 1.删除工程里面的Android Depandencies,删除后会报错,不要理会.看下面 2.添加libs目录下的Android-support-v4.jar包 选中-->右键-- ...

  10. 使用 Azure CLI 2.0 从自定义磁盘创建 Linux VM

    本文说明如何在 Azure 中上传自定义的虚拟硬盘 (VHD) 或复制现有 VHD,并从自定义磁盘创建 Linux 虚拟机 (VM). 可以根据要求安装并配置 Linux 分发版,并使用该 VHD 快 ...