(转)关于bootstrap, boosting, bagging,Rand forest
转自:https://blog.csdn.net/jlei_apple/article/details/8168856
这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址,
在这里致谢作者的研究。
一并列出一些找到的介绍boosting算法的资源:
(1)视频讲义,介绍boosting算法,主要介绍AdaBoosing http://videolectures.net/mlss05us_schapire_b/
(2) 在这个网站的资源项里列出了对于boosting算法来源介绍的几篇文章,可以下载: http://www.boosting.org/tutorials
(3) 一个博客介绍了许多视觉中常用算法,作者的实验和理解,这里附录的链接是关于使用opencv进行人脸检测的过程和代码,可以帮助理解训练过程是如何完成的: http://www.cnblogs.com/tornadomeet/archive/2012/03/28/2420936.html
(4)这里是一个台湾的电子期刊上关于AdaBoost的介绍: http://140.113.87.114/cvrc/edm/vol_6/tech1.htm
“
( 一 )
“
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
这些术语,我经常搞混淆,现在把它们放在一起,以示区别。(部分文字来自网络,由于是之前记的笔记,忘记来源了,特此向作者抱歉)
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法。其核心思想和基本步骤如下:
(1) 采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。
(2) 根据抽出的样本计算给定的统计量T。
(3) 重复上述N次(一般大于1000),得到N个统计量T。
(4) 计算上述N个统计量T的样本方差,得到统计量的方差。
应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。
Jackknife: 和上面要介绍的Bootstrap功能类似,只是有一点细节不一样,即每次从样本中抽样时候只是去除几个样本(而不是抽样),就像小刀一样割去一部分。
(pku, sewm,shinningmonster.)
============================================================================================================================
下列方法都是上述Bootstraping思想的一种应用。
bagging
bootstrap aggregating的缩写。让该学习算法训练多轮,每轮的训练集由从初始的训练集中随机取出的n个训练样本组成,某个初始训练样本在某轮训练集中可以出现多次或根本不出现,训练之后可得到一个预测函数序列h_1,⋯ ⋯h_n ,最终的预测函数H对分类问题采用投票方式,对回归问题采用简单平均方法对新示例进行判别。
Boosting思想的一种改进型AdaBoost方法在邮件过滤、文本分类方面都有很好的性能。
gradient boosting(又叫Mart, Treenet)
Boosting是一种思想,Gradient Boosting是一种实现Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数(loss function)描述的是模型的不靠谱程度,损失函数越大,则说明模型越容易出错。如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。
Rand forest
随机森林,顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。 在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。 按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。
Rand forest与bagging的区别
1). Rand forest是选与输入样本的数目相同多的次数(可能一个样本会被选取多次,同时也会造成一些样本不会被选取到),而bagging一般选取比输入样本的数目少的样本;2). bagging是用全部特征来得到分类器,而rand forest是需要从全部特征中选取其中的一部分来训练得到分类器; 一般Rand forest效果比bagging效果好!
“
( 二 )原文地址: http://blog.sina.com.cn/s/blog_5dd2e9270100c8ko.html
“
个多项式级的学习算法来识别一组概念,并且识别正确率很高,那么这组概念是强可学习的;而如果学习算法识别一组概念的正确率仅比随机猜测略好,那么这组概念是弱可学习的。他们提出了弱学习算法与强学习算法的等价性问题,即是否可以将弱学习算法提升成强学习算法。如果两者等价,那么在学习概念时,只要找到一个比随机猜测略好的弱学习算法,就可以将其提升为强学习算法,而不必直接去找通常情况下很难获得的强学习算法。
文本分类中使用的投票方法(Voting,也叫组合分类器)就是一种典型的集成机器学习方法。它通过组合多个弱分类器来得到一个强分类器,包括Bagging和Boosting两种方式,二者的主要区别是取样方式不同。Bagging采用均匀取样,而Boosting根据错误率来取样,因此Boosting的分类精度要优于Bagging。投票分类方法虽然分类精度较高,但训练时间较长。Boosting思想的一种改进型AdaBoost方法在邮件过滤、文本分类方面都有很好的性能。
(转)关于bootstrap, boosting, bagging,Rand forest的更多相关文章
- Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别
引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting ...
- 【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆, ...
- 转载:bootstrap, boosting, bagging 几种方法的联系
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...
- bootstrap, boosting, bagging 几种方法的联系
http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...
- bootstrap, boosting, bagging
介绍boosting算法的资源: 视频讲义.介绍boosting算法,主要介绍AdaBoosing http://videolectures.net/mlss05us_schapire_b/ 在这个站 ...
- bootstrap boosting bagging辨析
http://blog.csdn.net/jlei_apple/article/details/8168856
- paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting
本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...
- 统计学习方法——CART, Bagging, Random Forest, Boosting
本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...
- Boosting&Bagging
Boosting&Bagging 集成学习方法不是单独的一个机器学习算法,而是通过构建多个机器学习算法来达到一个强学习器.集成学习可以用来进行分类,回归,特征选取和异常点检测等.随机森林算法就 ...
随机推荐
- poj 1469 COURSES (二分匹配)
COURSES Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16877 Accepted: 6627 Descript ...
- linq的decimal类型保存到数据库只保存到小数点后两位的问题
今天的一个decimal类型保存到数据的问题困扰了我很长时间,最后就是一个小小的设置问题解决······坑······深坑···· 话不多说,直接说问题,在说答案: 问题:linq当采用EF的DbCo ...
- hadoop 把mapreduce任务从本地提交到hadoop集群上运行
MapReduce任务有三种运行方式: 1.windows(linux)本地调试运行,需要本地hadoop环境支持 2.本地编译成jar包,手动发送到hadoop集群上用hadoop jar或者yar ...
- CentOS 文本操作命令
1.cat 用于查看纯文本文件,显示行号,加-n参数,适合内容较少的情况 2.more 用于查看纯文本文件,适合内容较多的情况 3.less 用于查看纯文本文件,可以上下翻页 4.head 用于查看纯 ...
- 【luogu2181】对角线
首先由于不会有三条对角线交于一点,所以过某一个交点有且只能有2条对角线 而这两条对角线实质上是确定了4个顶点(也可以看做是一个四边形的两条对角线交于一点,求四边形的数量). 因此我们只需要确定4个顶点 ...
- 51NOD 1565:模糊搜索——题解
http://www.51nod.com/onlineJudge/questionCode.html#problemId=1565¬iceId=445588 有两个基因串S和T,他们只包 ...
- BZOJ3523 [Poi2014]Bricks 【贪心】
题目链接 BZOJ3523 题解 简单的贪心题 优先与上一个不一样且数量最多的,如果有多个相同,则优先选择非结尾颜色 比较显然,但不知怎么证 #include<algorithm> #in ...
- bzoj 3673&3674 可持久化并查集&加强版(可持久化线段树+启发式合并)
CCZ在2015年8月25日也就是初三暑假要结束的时候就已经能切这种题了%%% 学习了另一种启发式合并的方法,按秩合并,也就是按树的深度合并,实际上是和按树的大小一个道理,但是感觉(至少在这题上)更好 ...
- ContestHunter暑假欢乐赛 SRM 01 - 儿童节常数赛 爆陵记
最后15min过了两题...MDZZ 果然是不适合OI赛制啊...半场写完三题还自信满满的,还好有CZL报哪题错了嘿嘿嘿(这算不算犯规了(逃 悲惨的故事*1....如果没有CZL的话T1 10分 悲惨 ...
- ImageNet: what is top-1 and top-5 error rate?
https://stats.stackexchange.com/questions/156471/imagenet-what-is-top-1-and-top-5-error-rate Your cl ...