Pretrained models for Pytorch (Work in progress)
The goal of this repo is:
- to help to reproduce research papers results (transfer learning setups for instance),
- to access pretrained ConvNets with a unique interface/API inspired by torchvision.
News:
- 04/06/2018: PolyNet and PNASNet-5-Large thanks to Alex Parinov
- 16/04/2018: SE-ResNet* and SE-ResNeXt* thanks to Alex Parinov
- 09/04/2018: SENet154 thanks to Alex Parinov
- 22/03/2018: CaffeResNet101 (good for localization with FasterRCNN)
- 21/03/2018: NASNet Mobile thanks to Veronika Yurchuk and Anastasiia
- 25/01/2018: DualPathNetworks thanks to Ross Wightman, Xception thanks to T Standley, improved TransformImage API
- 13/01/2018:
pip install pretrainedmodels
,pretrainedmodels.model_names
,pretrainedmodels.pretrained_settings
- 12/01/2018:
python setup.py install
- 08/12/2017: update data url (/!\
git pull
is needed) - 30/11/2017: improve API (
model.features(input)
,model.logits(features)
,model.forward(input)
,model.last_linear
) - 16/11/2017: nasnet-a-large pretrained model ported by T. Durand and R. Cadene
- 22/07/2017: torchvision pretrained models
- 22/07/2017: momentum in inceptionv4 and inceptionresnetv2 to 0.1
- 17/07/2017: model.input_range attribut
- 17/07/2017: BNInception pretrained on Imagenet
Summary
- Installation
- Quick examples
- Few use cases
- Evaluation on ImageNet
- Documentation
- Available models
- AlexNet
- BNInception
- CaffeResNet101
- DenseNet121
- DenseNet161
- DenseNet169
- DenseNet201
- DenseNet201
- DualPathNet68
- DualPathNet92
- DualPathNet98
- DualPathNet107
- DualPathNet113
- FBResNet152
- InceptionResNetV2
- InceptionV3
- InceptionV4
- NASNet-A-Large
- NASNet-A-Mobile
- PNASNet-5-Large
- PolyNet
- ResNeXt101_32x4d
- ResNeXt101_64x4d
- ResNet101
- ResNet152
- ResNet18
- ResNet34
- ResNet50
- SENet154
- SE-ResNet50
- SE-ResNet101
- SE-ResNet152
- SE-ResNeXt50_32x4d
- SE-ResNeXt101_32x4d
- SqueezeNet1_0
- SqueezeNet1_1
- VGG11
- VGG13
- VGG16
- VGG19
- VGG11_BN
- VGG13_BN
- VGG16_BN
- VGG19_BN
- Xception
- Model API
- Available models
- Reproducing porting
Installation
Install from pip
pip install pretrainedmodels
Install from repo
git clone https://github.com/Cadene/pretrained-models.pytorch.git
cd pretrained-models.pytorch
python setup.py install
Quick examples
- To import
pretrainedmodels
:
import pretrainedmodels
- To print the available pretrained models:
print(pretrainedmodels.model_names)
> ['fbresnet152', 'bninception', 'resnext101_32x4d', 'resnext101_64x4d', 'inceptionv4', 'inceptionresnetv2', 'alexnet', 'densenet121', 'densenet169', 'densenet201', 'densenet161', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'inceptionv3', 'squeezenet1_0', 'squeezenet1_1', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', 'nasnetalarge', 'nasnetamobile', 'cafferesnet101', 'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152', 'se_resnext50_32x4d', 'se_resnext101_32x4d', 'cafferesnet101', 'polynet', 'pnasnet5large']
- To print the available pretrained settings for a chosen model:
print(pretrainedmodels.pretrained_settings['nasnetalarge'])
> {'imagenet': {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/nasnetalarge-a1897284.pth', 'input_space': 'RGB', 'input_size': [3, 331, 331], 'input_range': [0, 1], 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'num_classes': 1000}, 'imagenet+background': {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/nasnetalarge-a1897284.pth', 'input_space': 'RGB', 'input_size': [3, 331, 331], 'input_range': [0, 1], 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'num_classes': 1001}}
- To load a pretrained models from imagenet:
model_name = 'nasnetalarge' # could be fbresnet152 or inceptionresnetv2
model = pretrainedmodels.__dict__[model_name](num_classes=1000, pretrained='imagenet')
model.eval()
Note: By default, models will be downloaded to your $HOME/.torch
folder. You can modify this behavior using the $TORCH_MODEL_ZOO
variable as follow: export TORCH_MODEL_ZOO="/local/pretrainedmodels
- To load an image and do a complete forward pass:
import torch
import pretrainedmodels.utils as utils
load_img = utils.LoadImage()
# transformations depending on the model
# rescale, center crop, normalize, and others (ex: ToBGR, ToRange255)
tf_img = utils.TransformImage(model)
path_img = 'data/cat.jpg'
input_img = load_img(path_img)
input_tensor = tf_img(input_img) # 3x400x225 -> 3x299x299 size may differ
input_tensor = input_tensor.unsqueeze(0) # 3x299x299 -> 1x3x299x299
input = torch.autograd.Variable(input_tensor,
requires_grad=False)
output_logits = model(input) # 1x1000
- To extract features (beware this API is not available for all networks):
output_features = model.features(input) # 1x14x14x2048 size may differ
output_logits = model.logits(output_features) # 1x1000
Few use cases
Compute imagenet logits
- See examples/imagenet_logits.py to compute logits of classes appearance over a single image with a pretrained model on imagenet.
$ python examples/imagenet_logits.py -h
> nasnetalarge, resnet152, inceptionresnetv2, inceptionv4, ...
$ python examples/imagenet_logits.py -a nasnetalarge --path_img data/cat.png
> 'nasnetalarge': data/cat.png' is a 'tiger cat'
Compute imagenet evaluation metrics
- See examples/imagenet_eval.py to evaluate pretrained models on imagenet valset.
$ python examples/imagenet_eval.py /local/common-data/imagenet_2012/images -a nasnetalarge -b 20 -e
> * Acc@1 92.693, Acc@5 96.13
Evaluation on imagenet
Accuracy on validation set (single model)
Results were obtained using (center cropped) images of the same size than during the training process.
Model | Version | Acc@1 | Acc@5 |
---|---|---|---|
PNASNet-5-Large | Tensorflow | 82.858 | 96.182 |
PNASNet-5-Large | Our porting | 82.736 | 95.992 |
NASNet-A-Large | Tensorflow | 82.693 | 96.163 |
NASNet-A-Large | Our porting | 82.566 | 96.086 |
SENet154 | Caffe | 81.32 | 95.53 |
SENet154 | Our porting | 81.304 | 95.498 |
PolyNet | Caffe | 81.29 | 95.75 |
PolyNet | Our porting | 81.002 | 95.624 |
InceptionResNetV2 | Tensorflow | 80.4 | 95.3 |
InceptionV4 | Tensorflow | 80.2 | 95.3 |
SE-ResNeXt101_32x4d | Our porting | 80.236 | 95.028 |
SE-ResNeXt101_32x4d | Caffe | 80.19 | 95.04 |
InceptionResNetV2 | Our porting | 80.170 | 95.234 |
InceptionV4 | Our porting | 80.062 | 94.926 |
DualPathNet107_5k | Our porting | 79.746 | 94.684 |
ResNeXt101_64x4d | Torch7 | 79.6 | 94.7 |
DualPathNet131 | Our porting | 79.432 | 94.574 |
DualPathNet92_5k | Our porting | 79.400 | 94.620 |
DualPathNet98 | Our porting | 79.224 | 94.488 |
SE-ResNeXt50_32x4d | Our porting | 79.076 | 94.434 |
SE-ResNeXt50_32x4d | Caffe | 79.03 | 94.46 |
Xception | Keras | 79.000 | 94.500 |
ResNeXt101_64x4d | Our porting | 78.956 | 94.252 |
Xception | Our porting | 78.888 | 94.292 |
ResNeXt101_32x4d | Torch7 | 78.8 | 94.4 |
SE-ResNet152 | Caffe | 78.66 | 94.46 |
SE-ResNet152 | Our porting | 78.658 | 94.374 |
ResNet152 | Pytorch | 78.428 | 94.110 |
SE-ResNet101 | Our porting | 78.396 | 94.258 |
SE-ResNet101 | Caffe | 78.25 | 94.28 |
ResNeXt101_32x4d | Our porting | 78.188 | 93.886 |
FBResNet152 | Torch7 | 77.84 | 93.84 |
SE-ResNet50 | Caffe | 77.63 | 93.64 |
SE-ResNet50 | Our porting | 77.636 | 93.752 |
DenseNet161 | Pytorch | 77.560 | 93.798 |
ResNet101 | Pytorch | 77.438 | 93.672 |
FBResNet152 | Our porting | 77.386 | 93.594 |
InceptionV3 | Pytorch | 77.294 | 93.454 |
DenseNet201 | Pytorch | 77.152 | 93.548 |
DualPathNet68b_5k | Our porting | 77.034 | 93.590 |
CaffeResnet101 | Caffe | 76.400 | 92.900 |
CaffeResnet101 | Our porting | 76.200 | 92.766 |
DenseNet169 | Pytorch | 76.026 | 92.992 |
ResNet50 | Pytorch | 76.002 | 92.980 |
DualPathNet68 | Our porting | 75.868 | 92.774 |
DenseNet121 | Pytorch | 74.646 | 92.136 |
VGG19_BN | Pytorch | 74.266 | 92.066 |
NASNet-A-Mobile | Tensorflow | 74.0 | 91.6 |
NASNet-A-Mobile | Our porting | 74.080 | 91.740 |
ResNet34 | Pytorch | 73.554 | 91.456 |
BNInception | Our porting | 73.522 | 91.560 |
VGG16_BN | Pytorch | 73.518 | 91.608 |
VGG19 | Pytorch | 72.080 | 90.822 |
VGG16 | Pytorch | 71.636 | 90.354 |
VGG13_BN | Pytorch | 71.508 | 90.494 |
VGG11_BN | Pytorch | 70.452 | 89.818 |
ResNet18 | Pytorch | 70.142 | 89.274 |
VGG13 | Pytorch | 69.662 | 89.264 |
VGG11 | Pytorch | 68.970 | 88.746 |
SqueezeNet1_1 | Pytorch | 58.250 | 80.800 |
SqueezeNet1_0 | Pytorch | 58.108 | 80.428 |
Alexnet | Pytorch | 56.432 | 79.194 |
Notes:
- the Pytorch version of ResNet152 is not a porting of the Torch7 but has been retrained by facebook.
- For the PolyNet evaluation each image was resized to 378x378 without preserving the aspect ratio and then the central 331×331 patch from the resulting image was used.
Beware, the accuracy reported here is not always representative of the transferable capacity of the network on other tasks and datasets. You must try them all!
Pretrained models for Pytorch (Work in progress)的更多相关文章
- Caffe2 载入预训练模型(Loading Pre-Trained Models)[7]
这一节我们主要讲述如何使用预训练模型.Ipython notebook链接在这里. 模型下载 你可以去Model Zoo下载预训练好的模型,或者使用Caffe2的models.download模块获取 ...
- (转载)PyTorch代码规范最佳实践和样式指南
A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...
- pytorch中tensorboardX的用法
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xce ...
- (转)Awesome PyTorch List
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...
- Ubuntu 16.04上源码编译和安装pytorch教程,并编写C++ Demo CMakeLists.txt | tutorial to compile and use pytorch on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/54e7a3d8/,欢迎阅读最新内容! tutorial to compile and use pytorch on ubuntu ...
- (转) The Incredible PyTorch
转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is ...
- Run Your Tensorflow Deep Learning Models on Google AI
People commonly tend to put much effort on hyperparameter tuning and training while using Tensoflow& ...
- FaceNet pre-trained模型以及FaceNet源码使用方法和讲解
Pre-trained models Model name LFW accuracy Training dataset Architecture 20180408-102900 0.9905 CASI ...
- 【翻译】OpenVINO Pre-Trained 预训练模型介绍
OpenVINO 系列软件包预训练模型介绍 本文翻译自 Intel OpenVINO 的 "Overview of OpenVINO Toolkit Pre-Trained Models& ...
随机推荐
- sqlserver修改sa密码(在windows登陆没有权限的情况下)
对于windows用户没有权限执行alter login sa enable的情况下,采用如下方法可以成功修改sa密码登陆. . 用Run as a administrator打开命令提示符里输入NE ...
- [WC2005]友好的生物
description 洛谷 求 \[max_{1\le i<j\le n}\{\sum_{s=1}^{k-1}(C_s-|D_{is}-D_{js}|)-(C_k-|D_{ik}-D_{jk} ...
- 【倍增】LCM QUERY
给一个序列,每次给一个长度l,问长度为l的区间中lcm最小的. 题解:因为ai<60,所以以某个点为左端点的区间的lcm只有最多60种的情况,而且相同的lcm区间的连续的. 所以就想到一个n*6 ...
- Codeforces Round #469 (Div. 2) F. Curfew
贪心 题目大意,有2个宿管分别从1和n开始检查房间,记录人数不为n的房间个数,然后锁住房间. 没有被锁的房间中的学生可以选择藏在床底,留在原地,或者转移(最远转移d个房间) 然后抄了网上大神的代码 ...
- [AHOI2009]最小割 最小割可行边&必须边
~~~题面~~~ 题解: 做这题的时候才知道有最小割可行边和必须边这种东西..... 1,最小割可行边, 意思就是最小割中可能出现的边. 充要条件: 1,满流 2,在残余网络中找不到x ---> ...
- HTTPS证书生成方法,也适用于APP
步骤: 一.登录服务器,创建ioscert目录 cd ~/servers/APP mkdir ioscert 二.cd到ioscert目录下,执行以下命令: 1.openssl genrsa -out ...
- BZOJ1834 [ZJOI2010]network 网络扩容 【最大流,费用流】
1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec Memory Limit: 64 MB Submit: 3394 Solved: 1774 [Subm ...
- Centos版本6的使用教程
Centos版本6的使用教程 1.打开VMware workstation 12 PRO 创建新的虚拟机. 2.使用典型类型配置. 3.选择稍后安装操作系统,可以在后面进行安装. 4.选择安装的系统 ...
- Codeforces Round #344 (Div. 2) B
B. Print Check time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- BAT script to set local account password never expire
BAT script wmic UserAccount where Name="account123" set PasswordExpires=False