发现自己推得组合数好像不太一样

先把这个复杂的柿子写一遍

\[\sum_{i=2}^{\left \lfloor\frac{n}{k}\right \rfloor}C_{2^k-1}^{i}+\sum_{i=1}^{2^{n\text{ } \text{mod} \text{ }k}-1}C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}
\]

感觉这个柿子非常蛇皮

但是非常好求啊

由于\(2^k-1\)非常小,最大仅仅是\(511\),所以我们没有什么必要预处理阶乘,我们可以直接用组合数递推的方式来做

于是不需要打高精除或者高精乘了,一个高精加就够了

于是做法就非常无脑了,重要的是这个柿子是怎么推出来的

首先我们先考虑一个非常弱化的版本,就是\(k|n\)

如果\(k|n\)的话,**那么这个长度为\(n\)的二进制数就能被恰好分成\(n/k\)个块,而且每一个块能选择的数都是\(0\)到\(2^k-1\)这\(2^k\)个数

**

我们发现\(0\)这个非常不好考虑,于是我们可以先忽略掉\(0\)

所以现在有\(n/k\)个块,每个块内能填\(2^k-1\)种数

那么就有\(C_{2^k-1}^{n/k}\)种可能

之后我们再来考虑\(0\)的情况,首先最高位(如果不是第二位的话)是可以填\(0\)的,而剩下的\(n/k-1\)个块我们仍旧按照之前的方式来填,于是就有\(C_{2^k-1}^{n/k-1}\),之后对于次高位还是可以填\(0\)(同时最高位也填\(0\)),那么还有\(n/k-2\)个块,于是就是\(C_{2^k-1}^{n/k-2}\)

以此类推,直到对于第三个的块,我们还是可以填将这个块以及之前所有的块都填\(0\),那么就还有\(2\)个块,于是就是\(C_{2^k-1}^{2}\)

而第二个块可是不能填\(0\)了,于是就没了

所以对于\(k|n\)的时候,答案就是

\[\sum_{i=2}^{n/k}C_{2^k-1}^{i}
\]

之后我们再来考虑一下\(k\)不整除\(n\)的情况

这个样子的话一共会分成\(\left \lfloor\frac{n}{k}\right \rfloor+1\)个块,\(\left \lfloor\frac{n}{k}\right \rfloor\)个块内可以选择的数都是\(0\)到\(2^k-1\)这\(2^k\)个数,而最后一个不完整的块只有\(n\text{ } \text{mod} \text{ }k\)位,所以能选择的数只有\(0\)到\(2^{n\text{ } \text{mod} \text{ }k}-1\)

如果这个最高位选择填\(0\)那么退化成了\(k|n\)的情况,所以最高位填0的方案数为

\[\sum_{i=2}^{\left \lfloor\frac{n}{k}\right \rfloor}C_{2^k-1}^{i}
\]

之后最高位还有\(1\)到\(2^{n\text{ } \text{mod} \text{ }k}-1\)这些数可以填,如果我们选择填\(i\)的话,那么剩下的块内就不能填比\(i\)小的数,于是剩下的每个块内能选择的就有\(2^k-1-i\)个数,所以方案数就是\(C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}\)

所以最后的答案还应该加上

\[\sum_{i=1}^{2^{n\text{ } \text{mod} \text{ }k}-1}C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}
\]

代码

#include<cstring>
#include<string>
#include<cstdio>
#include<iostream>
#define re register
#define maxn 512
using namespace std;
string c[maxn][maxn];
int n,k;
int p,t;
int res;
int aa[201],bb[201],cc[201];
inline string sum(string a,string b)
{
memset(aa,0,sizeof(aa));
memset(bb,0,sizeof(bb));
memset(cc,0,sizeof(cc));
int lena=a.size();
int lenb=b.size();
for(re int i=0;i<lena;i++)
aa[i+1]=a[lena-i-1]-48;
for(re int i=0;i<lenb;i++)
bb[i+1]=b[lenb-i-1]-48;
int p=1;
for(p=1;p<=max(lena,lenb)||cc[p];p++)
{
cc[p]+=aa[p]+bb[p];
cc[p+1]+=cc[p]/10;
cc[p]%=10;
}
string C="\0";
for(re int i=p-1;i;i--)
C+=char(cc[i]+48);
return C;
}
int main()
{
scanf("%d%d",&k,&n);
p=n/k;
res=n%k;
t=(1<<k);
c[0][0]="1";
for(re int i=1;i<=t-1;i++)
c[i][0]=c[i][i]="1";
for(re int i=1;i<t;i++)
for(re int j=1;j<i;j++)
c[i][j]=sum(c[i-1][j-1],c[i-1][j]);
string ans="0";
for(re int i=2;i<=p;i++)
{
if(i>t-1) break;
ans=sum(ans,c[t-1][i]);
}
int pp=(1<<res)-1;
for(re int i=1;i<=pp;i++)
{
if(p>t-1-i) break;
ans=sum(ans,c[t-1-i][p]);
}
cout<<ans<<endl;
return 0;
}

【2^k进制数】的更多相关文章

  1. [转]as3 算法实例【输出1 到最大的N 位数 题目:输入数字n,按顺序输出从1 最大的n 位10 进制数。比如输入3,则输出1、2、3 一直到最大的3 位数即999。】

    思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n ...

  2. 1813. M进制数问题

    1813. M进制数问题 Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description 试用 C++的类来表示一般进制数. 给定 2 ...

  3. CF459C Pashmak and Buses (构造d位k进制数

    C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 seco ...

  4. [codevs1157]2^k进制数

    [codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ...

  5. noip2006 2^k进制数

    设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w ...

  6. c++描述将一个2进制数转化成10进制数(用到初始化栈,进栈,入栈)

    /* c++描述将2进制数转化成10进制数 问题,1.初始化栈后,用new,不知道delete是否要再写一个函数释放内存, 还是在哪里可以加上delete 2.如果栈满了,我要分配多点空间,我想的办法 ...

  7. 关于不同进制数之间转换的数学推导【Written By KillerLegend】

    关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...

  8. NOIP2006 2k进制数

    2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换 ...

  9. 4位bcd数转换为2进制数

    DATA   SEGMENTBUF    DW  1234HBUF1   DW  ?    ;2进制数放到buf1内存单元DATA   ENDSCODE   SEGMENTASSUME CS:CODE ...

  10. P1066 2^k进制数

    传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...

随机推荐

  1. 查找正序排列的List中缺失的日期数据的一个算法

    Code: public List<DateTime> getMissDateData() { DateTime[] keys = { DateTime.Now.AddDays(-5), ...

  2. webapi 权限控制解决方案

    随着移动互联网的发展,webapi的应用越来越广泛,本文是笔者总结的webapi的认证校验案例,欢迎指出 案例分为两个功能: 1.用户登录,传入账号和密码到api服务器,然后服务器使用FormsAut ...

  3. 开窗函数over()

    使用方法 如:select name,avg(shengao)from xinxi group by name //我们都知道使用聚合函数要使用分组,如果不分组怎么办 Selct name,avg(s ...

  4. [android] 天气app布局练习(四)

    主要练习一下获取网络数据和解析xml MainActivity.java package com.example.weatherreport; import java.io.UnsupportedEn ...

  5. Python基础学习总结(九)

    11测试代码 1.编写函数和类时,还可以编写测试函数,通过测试可以确定代码面对各种输入都能正常工作.在程序中添加新代码时,也可以对其进行测试,确定他们不会破坏程序的既有程序.要经常测试模块. 2.通过 ...

  6. PAT 1061. Dating

    题是别人出的,不按她的想法来也没办法,真心想k一顿 #include <cstdio> #include <cstdlib> using namespace std; cons ...

  7. python打开文件常见错误及解决办法

    打开文件注意事项: 打开文件时需要,填写正确的路径,需要配置与文件相同的编码方式打开位机例如’utf-8‘,需要以特定 的模式打开文件 r, w,r+,w+,rb,wb,a, a+,ab等模式 f.o ...

  8. csharp: Request.Form,Request.QueryString,Request.Params,Request.Cookies

    /// <summary> /// Request.Form,Request.QueryString,Request.Params /// http://msdn.microsoft.co ...

  9. eclipse Java类 红色感叹号 commit失败

    解决方法:  1.进入java类文件所在物理目录 (e:\workspace\myproject\...) 2. 删除多余的版本管理工具的文件或文件夹(如 .svn) 3. 刷新eclipse工程 4 ...

  10. javascript时间格式转换(今天,昨天,前天)

    function transDate() { var $time =document.getElementById("share-time"); var date = $time. ...