发现自己推得组合数好像不太一样

先把这个复杂的柿子写一遍

\[\sum_{i=2}^{\left \lfloor\frac{n}{k}\right \rfloor}C_{2^k-1}^{i}+\sum_{i=1}^{2^{n\text{ } \text{mod} \text{ }k}-1}C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}
\]

感觉这个柿子非常蛇皮

但是非常好求啊

由于\(2^k-1\)非常小,最大仅仅是\(511\),所以我们没有什么必要预处理阶乘,我们可以直接用组合数递推的方式来做

于是不需要打高精除或者高精乘了,一个高精加就够了

于是做法就非常无脑了,重要的是这个柿子是怎么推出来的

首先我们先考虑一个非常弱化的版本,就是\(k|n\)

如果\(k|n\)的话,**那么这个长度为\(n\)的二进制数就能被恰好分成\(n/k\)个块,而且每一个块能选择的数都是\(0\)到\(2^k-1\)这\(2^k\)个数

**

我们发现\(0\)这个非常不好考虑,于是我们可以先忽略掉\(0\)

所以现在有\(n/k\)个块,每个块内能填\(2^k-1\)种数

那么就有\(C_{2^k-1}^{n/k}\)种可能

之后我们再来考虑\(0\)的情况,首先最高位(如果不是第二位的话)是可以填\(0\)的,而剩下的\(n/k-1\)个块我们仍旧按照之前的方式来填,于是就有\(C_{2^k-1}^{n/k-1}\),之后对于次高位还是可以填\(0\)(同时最高位也填\(0\)),那么还有\(n/k-2\)个块,于是就是\(C_{2^k-1}^{n/k-2}\)

以此类推,直到对于第三个的块,我们还是可以填将这个块以及之前所有的块都填\(0\),那么就还有\(2\)个块,于是就是\(C_{2^k-1}^{2}\)

而第二个块可是不能填\(0\)了,于是就没了

所以对于\(k|n\)的时候,答案就是

\[\sum_{i=2}^{n/k}C_{2^k-1}^{i}
\]

之后我们再来考虑一下\(k\)不整除\(n\)的情况

这个样子的话一共会分成\(\left \lfloor\frac{n}{k}\right \rfloor+1\)个块,\(\left \lfloor\frac{n}{k}\right \rfloor\)个块内可以选择的数都是\(0\)到\(2^k-1\)这\(2^k\)个数,而最后一个不完整的块只有\(n\text{ } \text{mod} \text{ }k\)位,所以能选择的数只有\(0\)到\(2^{n\text{ } \text{mod} \text{ }k}-1\)

如果这个最高位选择填\(0\)那么退化成了\(k|n\)的情况,所以最高位填0的方案数为

\[\sum_{i=2}^{\left \lfloor\frac{n}{k}\right \rfloor}C_{2^k-1}^{i}
\]

之后最高位还有\(1\)到\(2^{n\text{ } \text{mod} \text{ }k}-1\)这些数可以填,如果我们选择填\(i\)的话,那么剩下的块内就不能填比\(i\)小的数,于是剩下的每个块内能选择的就有\(2^k-1-i\)个数,所以方案数就是\(C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}\)

所以最后的答案还应该加上

\[\sum_{i=1}^{2^{n\text{ } \text{mod} \text{ }k}-1}C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}
\]

代码

#include<cstring>
#include<string>
#include<cstdio>
#include<iostream>
#define re register
#define maxn 512
using namespace std;
string c[maxn][maxn];
int n,k;
int p,t;
int res;
int aa[201],bb[201],cc[201];
inline string sum(string a,string b)
{
memset(aa,0,sizeof(aa));
memset(bb,0,sizeof(bb));
memset(cc,0,sizeof(cc));
int lena=a.size();
int lenb=b.size();
for(re int i=0;i<lena;i++)
aa[i+1]=a[lena-i-1]-48;
for(re int i=0;i<lenb;i++)
bb[i+1]=b[lenb-i-1]-48;
int p=1;
for(p=1;p<=max(lena,lenb)||cc[p];p++)
{
cc[p]+=aa[p]+bb[p];
cc[p+1]+=cc[p]/10;
cc[p]%=10;
}
string C="\0";
for(re int i=p-1;i;i--)
C+=char(cc[i]+48);
return C;
}
int main()
{
scanf("%d%d",&k,&n);
p=n/k;
res=n%k;
t=(1<<k);
c[0][0]="1";
for(re int i=1;i<=t-1;i++)
c[i][0]=c[i][i]="1";
for(re int i=1;i<t;i++)
for(re int j=1;j<i;j++)
c[i][j]=sum(c[i-1][j-1],c[i-1][j]);
string ans="0";
for(re int i=2;i<=p;i++)
{
if(i>t-1) break;
ans=sum(ans,c[t-1][i]);
}
int pp=(1<<res)-1;
for(re int i=1;i<=pp;i++)
{
if(p>t-1-i) break;
ans=sum(ans,c[t-1-i][p]);
}
cout<<ans<<endl;
return 0;
}

【2^k进制数】的更多相关文章

  1. [转]as3 算法实例【输出1 到最大的N 位数 题目:输入数字n,按顺序输出从1 最大的n 位10 进制数。比如输入3,则输出1、2、3 一直到最大的3 位数即999。】

    思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n ...

  2. 1813. M进制数问题

    1813. M进制数问题 Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description 试用 C++的类来表示一般进制数. 给定 2 ...

  3. CF459C Pashmak and Buses (构造d位k进制数

    C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 seco ...

  4. [codevs1157]2^k进制数

    [codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ...

  5. noip2006 2^k进制数

    设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w ...

  6. c++描述将一个2进制数转化成10进制数(用到初始化栈,进栈,入栈)

    /* c++描述将2进制数转化成10进制数 问题,1.初始化栈后,用new,不知道delete是否要再写一个函数释放内存, 还是在哪里可以加上delete 2.如果栈满了,我要分配多点空间,我想的办法 ...

  7. 关于不同进制数之间转换的数学推导【Written By KillerLegend】

    关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...

  8. NOIP2006 2k进制数

    2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换 ...

  9. 4位bcd数转换为2进制数

    DATA   SEGMENTBUF    DW  1234HBUF1   DW  ?    ;2进制数放到buf1内存单元DATA   ENDSCODE   SEGMENTASSUME CS:CODE ...

  10. P1066 2^k进制数

    传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...

随机推荐

  1. 微信小程序准备阶段。(一)

    --知识储备--HTML+JS+CSS (一)下载一个微信web开发工具(后续代码都会写在这里边)附上链接:https://mp.weixin.qq.com/debug/wxadoc/dev/devt ...

  2. .Net程序员玩转Android系列之三~快速上手

    快速环境搭建和Hello World 第一步:JAVA SDK(JDK)的安装: 官方下载地址: http://www.oracle.com/technetwork/java/javase/downl ...

  3. js实现页面跳转的八种方式

    整理一下JavaScript八种跳转方式,欢迎评论补充! 第一种方法: <script> window.location.replace('http://www.cnblogs.com/c ...

  4. C Primer Plus note5

    error: expected '=', ',', ';', 'asm' or '__attribute__' before '{' token| 遇到这种情况,不要看这里显示了三个错误,就很着急.静 ...

  5. C语言实现整数数组的逆置算法

    读入100个整数到一个数组中,写出实现该数组进行逆置的算法. 方法一: 假设100个整数读入到数组a中,算法f1的思想是分别从数组两端依次将对应数进行交换,即a[i]与a[100 - i - 1]进行 ...

  6. Jave 之方法-函数(5)

    如何定义Java中的方法: 所谓方法,就是用来解决一类问题的代码的有序组合,是一个功能模块. (方法在C语言中被称为函数) 一般情况下,定义一个方法的语法是: 其中: 1. 访问修饰符:方法允许被访问 ...

  7. 116.001 - 爱折腾之用 Kindle 读学术论文是什么体验?

    @(116 - Kindle 使用指南) 结论先行 - 强烈安利k2pdfopt,把双栏论文转成kindle友好的pdf 整理转载自知乎@ wei huang 双栏学术论文在6寸屏上看就是个坑 新买的 ...

  8. linux 安装源码后的操作 ldconfig

    https://blog.csdn.net/cqkxboy168/article/details/8657487 知识点: .如果使用 ldd 命令时没有找到对应的共享库文件和其具体位置,可能是两种情 ...

  9. Qt 资料大全

    https://blog.csdn.net/liang19890820/article/details/51752029 简述 发福利了.发福利了.发福利了,重要的事情说三遍... 为了方便更多Qte ...

  10. java jdk切换出现的问题 jdk切换失败(转)

    1.问题:同时装两个版本的jdk时出现的问题(本次是1.7和1.8的版本),因为eclipse要求1.8版本的,但是我的Windows默认版本是1.7,导致无法启动eclipse 2.因为做开发的时候 ...