HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)
传送门:
http://acm.hdu.edu.cn/showproblem.php?pid=1053
Entropy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7233 Accepted Submission(s): 3047
English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.
In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.
Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.
As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.
THE_CAT_IN_THE_HAT
END
144 51 2.8
#include<bits/stdc++.h>
using namespace std;
int main()
{
string str;
while(cin>>str)
{
if(str=="END")
break;
int l=str.length();
int a[]={};
for(int i=;i<l;i++)
{
if(str[i]=='_')
{
a[]++;
}else
{
a[str[i]-'A'+]++;//字符统计
}
}
int f=;
for(int i=;i<;i++)//字符串单一字符情况
{
if(a[i]==l)
{
f=;
break;
}
}
if(f==)
{
printf("%d %d 8.0\n",l*,l);
continue;
}
//每次选择两个出现频率高的合成一共新的结点,然后再压入,直到队列力只有一个元素
priority_queue<int,vector<int>,greater<int> > q;//优先队列实现哈夫曼编码总权值
for(int i=;i<;i++)
{
if(a[i]!=)
q.push(a[i]);//压入
}
int ans=;
int x,y;
while()
{
x=q.top(),q.pop();
if(q.empty())
break;
y=q.top(),q.pop();
ans+=x+y;
q.push(x+y);
}
printf("%d %d %0.1lf\n",l*,ans,double(l*8.0/(ans*1.0)));
}
return ;
}
HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)的更多相关文章
- hdu 1053 Entropy (哈夫曼树)
Entropy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- hdoj 1053 Entropy(用哈夫曼编码)优先队列
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1053 讲解: 题意:给定一个字符串,根据哈夫曼编码求出最短长度,并求出比值. 思路:就是哈夫曼编码.把 ...
- [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)
一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...
- HDU 1053 & HDU 2527 哈夫曼编码
http://acm.hdu.edu.cn/showproblem.php?pid=1053 #include <iostream> #include <cstdio> #in ...
- HDU2527 哈夫曼编码
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- *HDU1053 哈夫曼编码
Entropy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- hdu2527哈夫曼编码
/* Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- [POJ 1521]--Entropy(哈夫曼树)
题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS Memory Limit: 10000K Description A ...
- 图像压缩编解码实验(DCT编码+量化+熵编码(哈夫曼编码))【MATLAB】
课程要求 Assignment IV Transform + Quantization + Entropy Coding Input: an intra-frame or a residue pict ...
随机推荐
- 分布式事务概述--2pc的概念
转载自一个大拿:http://www.cnblogs.com/LBSer/p/4715395.html 前阵子从支付宝转账1万块钱到余额宝,这是日常生活的一件普通小事,但作为互联网研发人员的职业病,我 ...
- rabbit的fanout扇形交换机
rabbit引入交换机概念. 交换机与生产者绑定. 队列与消费者绑定. 队列又与交换机绑定. 扇形交换机是 fanout类型的. 类似于其他消息中间件的 topic.一对多(生产者推送消息到指定交换 ...
- centos7安装java开发环境
一. 安装jdk 1.进入oracle官网下载jdk-8u152-linux-x64.tar.gz,用WinScp将文件上传到/usr/local文件下 2.解压:执行命令 tar –xzvf jdk ...
- 我所理解的js闭包
举个例子: function f1(){ var n=; function f2(){ alert(n); } } 上面代码中,f2()可以读取f1()中的局部变量n的值,但是f1()不能反过来读取f ...
- BZOJ4698: Sdoi2008 Sandy的卡片(后缀数组 二分)
题意 题目链接 Sol 不要问我为什么发两篇blog,就是为了骗访问量 后缀数组的也比较好想,先把所有位置差分,然后在height数组中二分就行了 数据好水啊 // luogu-judger-enab ...
- MYSQL数据库索引类型及使用
MYSQL数据库索引类型包括普通索引,唯一索引,主键索引与组合索引,这里对这些索引的做一些简单描述: (1)普通索引 这是最基本的MySQL数据库索引,它没有任何限制.它有以下几种创建方式: 创建索引 ...
- 完美解决Office2003、Office2007、Office2010、Office2013共存方法
原文:http://www.360doc.com/content/14/0903/16/7555793_406799011.shtml 微软Office深受广大用户的青睐,特别是经典的Office 2 ...
- MySQL半同步复制的搭建和配置原理
半同步复制: 什么是半同步复制?我们知道在默认情况下,MySQL的复制是异步的,这意味着主服务器及其从服务器是独立的.异步复制可以提供最佳的性能,因为主服务器在将更新的数据写入它的二进制日志(Binl ...
- 初级游戏外挂编程详解 windows运行原理+游戏辅助编程 游戏外挂编程
详解游戏辅助编程 [目录] 1-什么是Windows API 2-Windows进程 3-Windows 的内存的运行原理 4-windows 中句柄的概念 5-Windows的变量类型 6-辅助实现 ...
- Angular2 备忘
ng serve --port 80 --disable-host-check 启动80端口,禁用host检查 要在 component 内绑定全局事件的话,可以使用 @HostListener, ...