传送门:

http://acm.hdu.edu.cn/showproblem.php?pid=1053

Entropy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7233    Accepted Submission(s): 3047

Problem Description
An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with “wasted” or “extra” information removed. In other words, entropy encoding removes information that was not necessary in the first place to accurately encode the message. A high degree of entropy implies a message with a great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high entropy. Already compressed messages, such as JPEG graphics or ZIP archives, have very little entropy and do not benefit from further attempts at entropy encoding.

English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.

In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.

Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.

As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.

There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.

 
Input
The input file will contain a list of text strings, one per line. The text strings will consist only of uppercase alphanumeric characters and underscores (which are used in place of spaces). The end of the input will be signalled by a line containing only the word “END” as the text string. This line should not be processed.
 
Output
For each text string in the input, output the length in bits of the 8-bit ASCII encoding, the length in bits of an optimal prefix-free variable-length encoding, and the compression ratio accurate to one decimal point.
 
Sample Input
AAAAABCD
THE_CAT_IN_THE_HAT
END
 
Sample Output
64 13 4.9
144 51 2.8
 
Source
 
Recommend
We have carefully selected several similar problems for you:  1051 1054 1052 3177 1055 
 
题意是,给出一排字符串,要求求出字符的8位编码的长度,哈夫曼编码值,以及之间的比值
 
因为仅仅只要求求出哈夫曼编码值,所以不用建立哈夫曼树,可以建立优先队列,只要将每次最小的
 
出队的两个元素合成一个新的大数,然后放进优先队列中,直到只剩下一个元素为止,那个元素就是哈夫曼编码值。
 
注意只有一种字符的情况
 
code:
 
#include<bits/stdc++.h>
using namespace std;
int main()
{
string str;
while(cin>>str)
{
if(str=="END")
break;
int l=str.length();
int a[]={};
for(int i=;i<l;i++)
{
if(str[i]=='_')
{
a[]++;
}else
{
a[str[i]-'A'+]++;//字符统计
}
}
int f=;
for(int i=;i<;i++)//字符串单一字符情况
{
if(a[i]==l)
{
f=;
break;
}
}
if(f==)
{
printf("%d %d 8.0\n",l*,l);
continue;
}
//每次选择两个出现频率高的合成一共新的结点,然后再压入,直到队列力只有一个元素
priority_queue<int,vector<int>,greater<int> > q;//优先队列实现哈夫曼编码总权值
for(int i=;i<;i++)
{
if(a[i]!=)
q.push(a[i]);//压入
}
int ans=;
int x,y;
while()
{
x=q.top(),q.pop();
if(q.empty())
break;
y=q.top(),q.pop();
ans+=x+y;
q.push(x+y);
}
printf("%d %d %0.1lf\n",l*,ans,double(l*8.0/(ans*1.0)));
}
return ;
}
 

HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)的更多相关文章

  1. hdu 1053 Entropy (哈夫曼树)

    Entropy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  2. hdoj 1053 Entropy(用哈夫曼编码)优先队列

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1053 讲解: 题意:给定一个字符串,根据哈夫曼编码求出最短长度,并求出比值. 思路:就是哈夫曼编码.把 ...

  3. [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)

    一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...

  4. HDU 1053 & HDU 2527 哈夫曼编码

    http://acm.hdu.edu.cn/showproblem.php?pid=1053 #include <iostream> #include <cstdio> #in ...

  5. HDU2527 哈夫曼编码

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. *HDU1053 哈夫曼编码

    Entropy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  7. hdu2527哈夫曼编码

    /* Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...

  8. [POJ 1521]--Entropy(哈夫曼树)

    题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS    Memory Limit: 10000K Description A ...

  9. 图像压缩编解码实验(DCT编码+量化+熵编码(哈夫曼编码))【MATLAB】

    课程要求 Assignment IV Transform + Quantization + Entropy Coding Input: an intra-frame or a residue pict ...

随机推荐

  1. Effective C++ .17 函数调用时的资源管理

    以书上的代码为例 processWidget(shared_ptr<Widget>(new Widget), priority()) 虽然使用了智能指针来管理资源但是,由于参数值计算顺序的 ...

  2. javascript判断一个元素是另外一个元素的子元素

    javascript判断一个元素是另外一个元素的子元素用途有很多,最常用的就是当点击页面的空白处去执行某些操作,比如弹出层等. function isParent (obj,parentObj){ w ...

  3. js中的this--执行上下文

    条件:函数调用的时候  才有执行上下文 this 不同情况的调用,this也不同 1)当函数直接打点调用,此时的this 是window 2)事件触发函数,此时的this是触发这个事件的对象 3)当对 ...

  4. OGC 的 WMS、WFS 及WCS服务(转)

    OGC——Open Geospatial Consortium——开放地理信息联盟,是一个非盈利的志愿的国际标准化组织,引领着空间地理信息标准及定位基本服务的发展目前在空间数据互操作领域,基于公共接口 ...

  5. BottomBar之Android底部菜单

    BottomBar之Android底部菜单 前言:开源项目BottomBar,实现Android底部菜单(常用菜单,BottomBar实现动画(上下式)+消息菜单,BottomBar+ViewPage ...

  6. c++ inline 的位置不当导致的 无法解析的外部符号

    这几天编写代码碰到 无法解析的外部符号 visual studio. 在类中 inline 修饰符应该放在类函数定义的时候而不是声明的地方 即 // test.h 头文件 class A { publ ...

  7. SSIS ->> 管理和维护SSISDB

    Comming soon!!! 参考文献: Setup and Performance Issues with the Integration Services (SSIS) 2012 Catalog ...

  8. C++ Deque(双向队列)

      C++ Deque(双向队列)是一种优化了的.对序列两端元素进行添加和删除操作的基本序列容器.它允许较为快速地随机访问,但它不像vector 把所有的对象保存在一块连续的内存块,而是采用多个连续的 ...

  9. ibatis Order By注入问题

    上周六单位被扫描出SQL注入漏洞 经过检查,发现ibatis框架都可能出现这个问题.如果有需求,让你实现页面grid所有字段都能排序,你会怎么做呢? 最简单的做法就是从页面把字段名,排序类型传回来,然 ...

  10. 【Leetcode】【Medium】4Sum

    Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...