线段树+哈希【CF580E】Kefa and Watch

Description

\(n\)个数的字符串,\(m + k\)个操作

1 l r k把\(l - r\)赋值为\(k\)

2 l r d询问\(l - r\)是否有长度为\(d\)的循环节

\(n \leq 10^5, m + k \leq 10^5, d \leq 10\)

Input

第一行为三个整数\(n,m,k\)

第二行为一个\(n\)个数的字符串。

接下来\(m+k\)行每行对应一种操作。

Output

对于每一个\(2\)操作,如果存在,输出一行\(YES\),否则输出\(NO\)

线段树维护哈希

写起来爽,调起来更爽

我们首先预处理出\(po\)数组记录\(base^i\)(这个要用来修改及查询的。)

还要预处理出来\(val[i][j]\)代表长度为\(j\)的全部为数字\(i\)的字符串的哈希值。

然后每次区间合并的时候.

\[len=tr[rs].r-tr[rs].l+1 \\
tr[o].va=(tr[ls].va\times po[len]%\ mod +tr[rs].va) %\ mod
\]

这个应该不是很难理解吧。(就类似于你\(hash\)匹配的做法。)

修改时候,我们直接赋值\(tr[o].va=val[k][len]\)即可。

需要注意的有两点:

  1. \(lazy\)标记初值要为\(1\),因为会存在赋值为\(0\)的情况
  2. 查询操作中,当前区间分别在左右两侧的时候\(tr[ls].va \times po[r-mid]\)!!

因此直接码代码就好了

还有一个神仙结论是做题的根据。

如果询问为\((l,r,d)\),则只需要判断\((l+d,r)\)和\((l,r-d)\)即可。

证明的话,我不太会.但是这是正确的。

如果这题卡单\(hash\)的话可以写双\(hash\)。稍作修改即可。不多\(BB\)了.

代码

#include<cstdio>
#include<algorithm>
#include<iostream>
#define lo long long
#define base 31
#define mod 20020303
#define R register using namespace std; const int gz=1e5+8; inline void in(R int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} int n,m,K,po[gz]={1},val[10][gz]; char s[gz]; struct wc
{
int l,r,tg;
lo va;
}tr[gz<<2]; inline void pre()
{
for(R int i=1;i<gz;i++)
po[i]=po[i-1]*base%mod;
for(R int i=0;i<10;i++)
for(R int j=1;j<gz;j++)
val[i][j]=(val[i][j-1]*base%mod+i)%mod;
} #define ls o<<1
#define rs o<<1|1 inline void up(R int o)
{
tr[o].va=(tr[ls].va*po[tr[rs].r-tr[rs].l+1]%mod+tr[rs].va%mod)%mod;
} void build(R int o,R int l,R int r)
{
tr[o].l=l,tr[o].r=r;tr[o].tg=-1;
if(l==r)
{
tr[o].va=s[l]-'0';
return;
}
R int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
} inline void down(R int o)
{
if(tr[o].tg==-1)return;
R int k=tr[o].tg;
tr[ls].va=val[k][tr[ls].r-tr[ls].l+1];
tr[rs].va=val[k][tr[rs].r-tr[rs].l+1];
tr[ls].tg=tr[rs].tg=k;
tr[o].tg=-1;
} void change(R int o,R int l,R int r,R int k)
{
if(tr[o].l==l and tr[o].r==r)
{
tr[o].tg=k;
tr[o].va=val[k][tr[o].r-tr[o].l+1];
return ;
}
down(o);
R int mid=(tr[o].l+tr[o].r)>>1;
if(r<=mid)change(ls,l,r,k);
else if(l>mid)change(rs,l,r,k);
else change(ls,l,mid,k),change(rs,mid+1,r,k);
up(o);
} lo query(R int o,R int l,R int r)
{
if(tr[o].l==l and tr[o].r==r)return tr[o].va;
down(o);
R int mid=(tr[o].l+tr[o].r)>>1;
if(r<=mid)return query(ls,l,r);
else if(l>mid) return query(rs,l,r);
else
return ((query(ls,l,mid)%mod)*po[r-mid]%mod+query(rs,mid+1,r)%mod)%mod;//注意这里!!
} int main()
{
pre();
in(n),in(m),in(K);
R int tt=m+K;
scanf("%s",s+1);
build(1,1,n);
for(R int opt,l,r,k;tt;tt--)
{
in(opt),in(l),in(r),in(k);
switch(opt)
{
case 1:change(1,l,r,k);break;
case 2:
{
if(r-l+1==k)
{
puts("YES");
continue;
}
puts(query(1,l,r-k)==query(1,l+k,r) ? "YES":"NO");
break;
}
}
}
}

线段树+哈希【CF580E】Kefa and Watch的更多相关文章

  1. 【线段树哈希】「Balkan OI 2016」Haker

    1A海星 题目大意 给你一个长度为 $n$ ,由小写字母构成的字符串 $S$ 和 $Q$ 个操作,每个操作是以下 3 种之一: 1 x y k :询问当前字符串从位置 $x$ 到 $y$ 的子串与从位 ...

  2. cf580E. Kefa and Watch(线段树维护字符串hash)

    题意 $n$个数的序列,$m + k$种操作 1.$l , r, k$把$l - r$赋值为$k$ 2.$l, r, d$询问$l - r$是否有长度为$d$的循环节 Sol 首先有个神仙结论:若询问 ...

  3. Codeforces Round #321 (Div. 2) E. Kefa and Watch 线段树hash

    E. Kefa and Watch Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/580/prob ...

  4. 51Nod1553 周期串查询 字符串 哈希 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1553.html 题目传送门 - 51Nod1553 题意 有一个串只包含数字字符.串的长度为n,下标 ...

  5. 线段树 + 字符串Hash - Codeforces 580E Kefa and Watch

    Kefa and Watch Problem's Link Mean: 给你一个长度为n的字符串s,有两种操作: 1 L R C : 把s[l,r]全部变为c; 2 L R d : 询问s[l,r]是 ...

  6. [bzoj2124]等差子序列——线段树+字符串哈希

    题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...

  7. CF213E Two Permutations 线段树维护哈希值

    当初竟然看成子串了$qwq$,不过老师的$ppt$也错了$qwq$ 由于子序列一定是的排列,所以考虑插入$1$到$m$到$n-m+1$到$n$; 如何判断呢?可以用哈希$qwq$: 我们用线段树维护哈 ...

  8. HDU3973 线段树 + 字符哈希

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3973 , 线段树 + 字符哈希,好题. 又学了一种新的哈希方法,hhhh~ 解法: 想法是用P进制的数 ...

  9. 【URAL 1989】 Subpalindromes(线段树维护哈希)

    Description You have a string and queries of two types: replace i'th character of the string by char ...

随机推荐

  1. truncate与delete以及drop

    truncate:删除整个表,但不删除定义(删除了整个表的数据,但表结构还在) drop:删除整个表,表数据和表结构都删除了 delete:删除表中数据 比较delete和drop 1.truncat ...

  2. Long Parameter List(过长参数列)---要重构的味道

      一个函数,它的参数过多是不好的,不好维护和修改,易读性也差,容易出错.       消除过长参数的方法,有如下:        1.在面向对象中,你可以传递一个对象给函数,函数通过访问对象来获得参 ...

  3. 【Foreign】数据结构C [线段树]

    数据结构C Time Limit: 20 Sec  Memory Limit: 512 MB Description Input Output Sample Input Sample Output H ...

  4. centos6.5下安装svn并且实现多项目管理配置方案

    #安装SVN服务器 yum install subversion #在home下创建svn根目录 mkdir /home/svn #在 /home/svn下创建pro1 , pro2, pro3 三个 ...

  5. js 的function为什么可以添加属性

    (1) function person(){ this.name = 'Tom'; } (2) function person(){} person.name = 'Tom'; (3) functio ...

  6. Angular2.0 基础:双向数据绑定 [(ngModel)]

    在属性绑定中,值从模型到屏幕上的目标属性 (property). 通过把属性名括在方括号中来标记出目标属性,[]. 这是从模型到视图的单向数据绑定. 而在事件绑定中,值是从屏幕上的目标属性 到 mod ...

  7. 获取应用版本号,版本名称,包名,AppName,图标,是否是系统应用,获取手机中所有应用,所有进程

    PackageManager packageManager = getPackageManager(); PackageInfo packageInfo; = packageManager.getPa ...

  8. python进行机器学习(四)之模型验证与参数选择

    一.模型验证 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 这里我们将 ...

  9. xrange和range的区别

    >>> print type(range(5)) <type 'list'> >>> print type(xrange(5)) <type 'x ...

  10. 剑指offer中数据结构与算法部分学习

    2.3.4 树 遍历:前中后序,宽度优先. 二叉树的特例:二叉搜索树.堆(最大堆和最小堆,用于找最值).红黑树(c++ STL中的很多数据结果就是基于这实现的): 题7-重建二叉树:递归,设置四个位点 ...