Problem Description
Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not complete and some elements are missing. Fortunately, Professor Zhang remembers some properties of the sequence:

1. For every i∈{1,2,...,n}, 0≤ai≤100.
2. The sequence is non-increasing, i.e. a1≥a2≥...≥an.
3. The sum of all elements in the sequence is not zero.

Professor Zhang wants to know the maximum value of a1+a2∑ni=1ai among all the possible sequences.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first contains two integers n and m (2≤n≤100,0≤m≤n) -- the length of the sequence and the number of known elements.

In the next m lines, each contains two integers xi and yi (1≤xi≤n,0≤yi≤100,xi<xi+1,yi≥yi+1), indicating that axi=yi.

 
Output
For each test case, output the answer as an irreducible fraction "p/q", where p, q are integers, q>0.
 
Sample

Sample Input

Sample Output
/
/

题意:

  有一个数字序列,给出数字序列的性质是:

  1.每个数最大为100,最小为0

  2.序列非递增

  3.序列总和不为0

  求出这个数列的最大值

  样例:第一行是T,表示T组测试样例,第二行是n,m。表示序列的长度和已知数的个数。下m行为xy,表示axi=yi

      第一组 长度为2,已知0个。则最大值为(100+100)/(100+100)或者(1+1)/(1+1)最大值为1。

      第二组长度为3,已知1个。已知的这一个为a3=1 。则最大值为(100+100)/(100+100+1)

思路:

  想求(a1+a2)/(a1+a2+...+an) 的最大值,只要让分母尽可能大,分子尽可能小即可。

  有两种情况,第一种为已知a1,a2。让不知道的数取最小值(不是0,因为要保证序列非递增)。

  第二种情况,不知道a1或者a2。让a1和a2取最大值(也要注意序列非递增)。

  最后用GCD求出a1+a2与序列和的最大公因数,然后取分数。

代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int gcd(int a,int b)//求最大公约数
{
if(b==)
return a;
return gcd(b,a%b);
}
int main()
{
int a[],t,m,n;
scanf("%d",&t);
while(t--)
{
int i,j,x,y,sum1=,sum2=,ans=;
int w=;
scanf("%d%d",&n,&m);
for(i=; i<=n; i++)
a[i]=-;//初始化数组为-1,因为数组从0-100,所以可以用-1来表示
for(i=; i<=m; i++)
{
scanf("%d%d",&x,&y);
a[x]=y;//将已知条件赋值
}
for(i=n; i>=; i--)//从3-n尽量取最小
{
if(a[i]==-)//如果后面没有值,说明没有非递增限制,直接赋值为w,w初始为0
a[i]=w;
else//如果已经有值,则值前面的赋值为这个值。
{
w=a[i];
}
}
if(a[]==-)/*如果a[1]没有值,则赋值为100(最大)*/
a[]=;
if(a[]==-)/*如果a[2]没有值,则与a[1]相同*/
a[]=a[];
for(i=; i<=n; i++)
sum1+=a[i];
sum2=a[]+a[];
ans=gcd(sum2,sum1);
printf("%d/%d\n",(sum2/ans),(sum1/ans));
}
}

HDU5742 It's All In The Mind 数学思维题的更多相关文章

  1. PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记

    PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...

  2. Gym 100801D Distribution in Metagonia (数学思维题)

    题目:传送门.(需要下载PDF) 题意:t组数据,每组数据给定一个数ni(1 ≤ ni ≤ 10^18),把ni拆成尽可能多的数,要求每个数的素因子只包含2和3,且这些数不能被彼此整除,输出一共能拆成 ...

  3. HDU5742 It's All In The Mind(思维题,水题)

    Problem Description Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not ...

  4. 51Nod 1003 阶乘后面0的数量(数学,思维题)

    1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5         难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...

  5. BZOJ4377 Kurs szybkiego czytania \ Luogu 3589[POI2015]KUR - 数学思维题

    Solution 我又双叒叕去看题解啦$QAQ$, 真的想不到鸭 输入 $a$ 和 $n$ 互质, 所以满足 $a \times i \ mod \ n$ $(0<=i<n)$ 肯定是不重 ...

  6. BZOJ4377[POI2015]Kurs szybkiego czytania——数学思维题

    题目描述 给定n,a,b,p,其中n,a互质.定义一个长度为n的01串c[0..n-1],其中c[i]==0当且仅当(ai+b) mod n < p.给定一个长为m的小01串,求出小串在大串中出 ...

  7. EOJ2018.10 月赛(B 数学+思维题)

    传送门:Problem B https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 找到最小的包含子序列a的序列s,并且序列s是 p -莫干山序 ...

  8. EOJ2018.10 月赛(A 数学+思维题)

    传送门:Problem A https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 能否通过横着排或竖着排将 1x p 的小姐姐填满 n x m ...

  9. zoj 2818 Root of the Problem(数学思维题)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2818 题目描述: Given positive integer ...

随机推荐

  1. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  2. ImageView设置边框 以及内部图片居中显示 在AndroidStudio中添加shape.xml文件

    效果如图 边框设置:shape文件 <shape xmlns:android="http://schemas.android.com/apk/res/android"> ...

  3. python进行机器学习(五)之模型打分

    一.画出模型的残差值分布情况 #!/usr/bin/python import pandas as pd import numpy as np import csv as csv import mat ...

  4. 【1】记一次破解wifi

    当然,使用的依旧是aircrack套件,这次依旧是跑字典,今天,捉到了另一个实验室icephone的wpa握手包,我猜测实验室的wifi一般都跟自己的名字有关,icephone刚好是8位字母,于是我就 ...

  5. perl模拟登录(1)

    use WWW::Mechanize; my $ua = WWW::Mechanize->new(); $ua->post('http://localhost/dvwa/DVWA-mast ...

  6. python中multiprocessing模块

    multiprocess模块那来干嘛的? 答:利用multiprocessing可以在主进程中创建子进程.Threading是多线程,multiprocessing是多进程. #该模块和Threadi ...

  7. ES6 新增的一些东西

    一.常量 不允许重复定义 const a='HELLO' const a='world'//报错Uncaught SyntaxError: Identifier 'a' has already bee ...

  8. 机器学习开源项目精选TOP30

    本文共图文结合,建议阅读5分钟. 本文为大家带来了30个广受好评的机器学习开源项目. 640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1 最近,Mybridge发布了 ...

  9. Filecoin:一种去中心化的存储网络(二)

    开始初步了解学习Filecoin,如下是看白皮书的内容整理. 参考: 白皮书中文版 http://chainx.org/paper/index/index/id/13.html 白皮书英文版 http ...

  10. java中this的用法如:this.name=name

    package com.chensi; /** * 这个是为了搞懂那个 this.name = name的. * @author ZHL * */ public class ThisTestZhl { ...