Problem Description
Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not complete and some elements are missing. Fortunately, Professor Zhang remembers some properties of the sequence:

1. For every i∈{1,2,...,n}, 0≤ai≤100.
2. The sequence is non-increasing, i.e. a1≥a2≥...≥an.
3. The sum of all elements in the sequence is not zero.

Professor Zhang wants to know the maximum value of a1+a2∑ni=1ai among all the possible sequences.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first contains two integers n and m (2≤n≤100,0≤m≤n) -- the length of the sequence and the number of known elements.

In the next m lines, each contains two integers xi and yi (1≤xi≤n,0≤yi≤100,xi<xi+1,yi≥yi+1), indicating that axi=yi.

 
Output
For each test case, output the answer as an irreducible fraction "p/q", where p, q are integers, q>0.
 
Sample

Sample Input

Sample Output
/
/

题意:

  有一个数字序列,给出数字序列的性质是:

  1.每个数最大为100,最小为0

  2.序列非递增

  3.序列总和不为0

  求出这个数列的最大值

  样例:第一行是T,表示T组测试样例,第二行是n,m。表示序列的长度和已知数的个数。下m行为xy,表示axi=yi

      第一组 长度为2,已知0个。则最大值为(100+100)/(100+100)或者(1+1)/(1+1)最大值为1。

      第二组长度为3,已知1个。已知的这一个为a3=1 。则最大值为(100+100)/(100+100+1)

思路:

  想求(a1+a2)/(a1+a2+...+an) 的最大值,只要让分母尽可能大,分子尽可能小即可。

  有两种情况,第一种为已知a1,a2。让不知道的数取最小值(不是0,因为要保证序列非递增)。

  第二种情况,不知道a1或者a2。让a1和a2取最大值(也要注意序列非递增)。

  最后用GCD求出a1+a2与序列和的最大公因数,然后取分数。

代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int gcd(int a,int b)//求最大公约数
{
if(b==)
return a;
return gcd(b,a%b);
}
int main()
{
int a[],t,m,n;
scanf("%d",&t);
while(t--)
{
int i,j,x,y,sum1=,sum2=,ans=;
int w=;
scanf("%d%d",&n,&m);
for(i=; i<=n; i++)
a[i]=-;//初始化数组为-1,因为数组从0-100,所以可以用-1来表示
for(i=; i<=m; i++)
{
scanf("%d%d",&x,&y);
a[x]=y;//将已知条件赋值
}
for(i=n; i>=; i--)//从3-n尽量取最小
{
if(a[i]==-)//如果后面没有值,说明没有非递增限制,直接赋值为w,w初始为0
a[i]=w;
else//如果已经有值,则值前面的赋值为这个值。
{
w=a[i];
}
}
if(a[]==-)/*如果a[1]没有值,则赋值为100(最大)*/
a[]=;
if(a[]==-)/*如果a[2]没有值,则与a[1]相同*/
a[]=a[];
for(i=; i<=n; i++)
sum1+=a[i];
sum2=a[]+a[];
ans=gcd(sum2,sum1);
printf("%d/%d\n",(sum2/ans),(sum1/ans));
}
}

HDU5742 It's All In The Mind 数学思维题的更多相关文章

  1. PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记

    PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...

  2. Gym 100801D Distribution in Metagonia (数学思维题)

    题目:传送门.(需要下载PDF) 题意:t组数据,每组数据给定一个数ni(1 ≤ ni ≤ 10^18),把ni拆成尽可能多的数,要求每个数的素因子只包含2和3,且这些数不能被彼此整除,输出一共能拆成 ...

  3. HDU5742 It's All In The Mind(思维题,水题)

    Problem Description Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not ...

  4. 51Nod 1003 阶乘后面0的数量(数学,思维题)

    1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5         难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...

  5. BZOJ4377 Kurs szybkiego czytania \ Luogu 3589[POI2015]KUR - 数学思维题

    Solution 我又双叒叕去看题解啦$QAQ$, 真的想不到鸭 输入 $a$ 和 $n$ 互质, 所以满足 $a \times i \ mod \ n$ $(0<=i<n)$ 肯定是不重 ...

  6. BZOJ4377[POI2015]Kurs szybkiego czytania——数学思维题

    题目描述 给定n,a,b,p,其中n,a互质.定义一个长度为n的01串c[0..n-1],其中c[i]==0当且仅当(ai+b) mod n < p.给定一个长为m的小01串,求出小串在大串中出 ...

  7. EOJ2018.10 月赛(B 数学+思维题)

    传送门:Problem B https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 找到最小的包含子序列a的序列s,并且序列s是 p -莫干山序 ...

  8. EOJ2018.10 月赛(A 数学+思维题)

    传送门:Problem A https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 能否通过横着排或竖着排将 1x p 的小姐姐填满 n x m ...

  9. zoj 2818 Root of the Problem(数学思维题)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2818 题目描述: Given positive integer ...

随机推荐

  1. 【Dream Counting, 2006 Dec-数数的梦】数位dp

    题意:给定两个数,问区间[A,B]中0~9分别出现了多少次.A,B<=10^18 题解:应该是最裸的数位dp吧..一开始没有记忆化tle了TAT 我们可以求出区间[0,B]的,再减去区间[0,A ...

  2. MSSQL备份脚本

    ) ) ) ),),':',''),' ',''),'-',''),'.','') set @name=N'DEMO'+@temp+'-完整 数据库 备份' set @disk=N'F:\Backup ...

  3. charles https抓包

    1. 配置 Charles 根证书 首先打开 Charles: Charles 启动界面 主界面 然后如下图操作:   之后会弹出钥匙串,如果不弹出,请自行打开钥匙串,如下图: 钥匙串 系统默认是不信 ...

  4. js_数组去重效率对比

    学习javascript已经快两年了,也不知道到了什么程度了. 说说我对javascript的理解,在电脑的世界里,只有数据. 数组,对象,字符串.对这些数据进行操作就可以完成很多业务逻辑,和页面的交 ...

  5. [CTF技巧]批量连接SSH批量执行命令

    https://files.cnblogs.com/files/nul1/autossh1.3.jar.zip 下载下来以后直接将后缀去除就好了. 比赛的时候可以批量写一个不死马然后你懂的. Linu ...

  6. /proc/diskstats文件注解

    /proc/diskstats 注解 今儿在准备利用shell监控磁盘读写次数等信息时,看到该文件,但是又不清楚每段的具体含义,这里备注下. 文件内容 [root@namenode proc]# ca ...

  7. Linux 入门记录:三、Linux 文件基本操作管理

    一.复制文件.目录 使用 cp 命令复制文件或目录: $ cp 源文件(夹)目标文件(夹) 常用参数: -r 递归复制整个目录树 -v 显示复制过程的详细信息 二.移动.重命名文件或目录 通过 mv  ...

  8. barrier 和 preempt_disable() 学习【转】

    #define preempt_disable() \ do{ \ inc_preempt_count(); \ barrier();    \ }while(0) 一.这个barrier 在干什么. ...

  9. Linux 内核通知链随笔【中】【转】

    转自:http://blog.chinaunix.net/uid-23069658-id-4364171.html 关于内核通知链不像Netlink那样,既可以用于内核与用户空间的通信,还能用于内核不 ...

  10. 设计模式之笔记--原型模式(Prototype)

    原型模式(Prototype) 定义 原型模式(Prototype),用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象. 类图 描述 提供一个克隆自身的接口--Clone方法. 应用场景 ...