【BZOJ4709】[Jsoi2011]柠檬

Description

Flute 很喜欢柠檬。它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬。贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上。为了方便,我们从左到右给贝壳编号 1..N。每只贝壳的大小不一定相同,贝壳 i 的大小为 si(1 ≤ si ≤10,000)。变柠檬的魔法要求,Flute 每次从树枝一端取下一小段连续的贝壳,并选择一种贝壳的大小 s0。如果 这一小段贝壳中 大小为 s0 的贝壳有 t 只,那么魔法可以把这一小段贝壳变成 s0t^2 只柠檬。Flute 可以取任意多次贝壳,直到树枝上的贝壳被全部取完。各个小段中,Flute 选择的贝壳大小 s0 可以不同。而最终 Flute 得到的柠檬数,就是所有小段柠檬数的总和。Flute 想知道,它最多能用这一串贝壳变出多少柠檬。请你帮忙解决这个问题。

Input

第 1 行:一个整数,表示 N。
第 2 .. N + 1 行:每行一个整数,第 i + 1 行表示 si。

Output

仅一个整数,表示 Flute 最多能得到的柠檬数。

Sample Input

5
2
2
5
2
3

Sample Output

21
//Flute 先从左端取下 4 只贝壳,它们的大小为 2, 2, 5, 2。选择 s0 = 2,那么这一段里有 3 只大小为 s0 的贝壳,通过魔法可以得到 2×3^2 = 18 只柠檬。再从右端取下最后一只贝壳,通过魔法可以得到 1×3^1 = 3 只柠檬。总共可以得到 18 + 3 = 21 只柠檬。没有比这更优的方案了。

题解:大爷说他从来没做过用单调栈优化的斜率优化,唯一的一道还是他自己出的,不过今天我也算是见过第一道这样的题了。

首先,从两边进行操作可以看成只从一边进行操作,然后我们将原序列反过来再做一遍就行了。

其次,每次施魔法时,区间的左端点和右端点一定都是相同种类的贝壳,这告诉我们应该将每种颜色放到一起处理。然后可以列出DP方程:

$f[i]=max{f[j-1]+(s[i]-s[j]+1)^2*color}$。

其中s[i]表示i这个颜色的前缀和,然后移项

$f[j-1]+(s[j]-1)^2*color=2*s[i]*color*(s[j]-1)+f[i]-s[i]*v[i]$

发现x单调递增,y单调递增,k也单调递增,求的还是上凸包!所以用对于每个颜色都用一个单调栈维护即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#define y(_) (f[(_)-1]+(s[_]-1)*(s[_]-1)*j)
#define x(_) (s[_]-1)
#define k (2*s[i]*j)
using namespace std;
const int maxn=100010;
typedef long long ll;
int n,m;
ll ans;
int t[maxn],last[maxn],pre[maxn];
ll v[maxn],s[maxn],f[maxn],g[maxn];
vector<int> st[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,j;
for(i=1;i<=n;i++) v[i]=rd(),pre[i]=last[v[i]],last[v[i]]=i,s[i]=s[pre[i]]+1,m=max(m,(int)v[i]);
for(i=1;i<=m;i++) t[i]=-1;
for(i=1;i<=n;i++)
{
j=v[i];
while(t[j]>0&&(y(i)-y(st[j][t[j]]))*(x(st[j][t[j]])-x(st[j][t[j]-1]))>=(y(st[j][t[j]])-y(st[j][t[j]-1]))*(x(i)-x(st[j][t[j]]))) t[j]--,st[j].erase(st[j].end()-1);
t[j]++,st[j].push_back(i);
while(t[j]>0&&(y(st[j][t[j]])-y(st[j][t[j]-1]))<=k*(x(st[j][t[j]])-x(st[j][t[j]-1]))) t[j]--,st[j].erase(st[j].end()-1);
g[i]=f[i]=f[st[j][t[j]]-1]+(s[i]-s[st[j][t[j]]]+1)*(s[i]-s[st[j][t[j]]]+1)*j;
}
for(i=1;(i<<1)<=n;i++) swap(v[i],v[n-i+1]);
memset(last,0,sizeof(last));
for(i=1;i<=n;i++) pre[i]=last[v[i]],last[v[i]]=i,s[i]=s[pre[i]]+1;
for(i=1;i<=m;i++) st[i].clear(),t[i]=-1;
for(i=1;i<=n;i++)
{
j=v[i];
while(t[j]>0&&(y(i)-y(st[j][t[j]]))*(x(st[j][t[j]])-x(st[j][t[j]-1]))>=(y(st[j][t[j]])-y(st[j][t[j]-1]))*(x(i)-x(st[j][t[j]]))) t[j]--,st[j].erase(st[j].end()-1);
t[j]++,st[j].push_back(i);
while(t[j]>0&&(y(st[j][t[j]])-y(st[j][t[j]-1]))<=k*(x(st[j][t[j]])-x(st[j][t[j]-1]))) t[j]--,st[j].erase(st[j].end()-1);
f[i]=f[st[j][t[j]]-1]+(s[i]-s[st[j][t[j]]]+1)*(s[i]-s[st[j][t[j]]]+1)*j;
}
ans=0;
for(i=0;i<=n;i++) ans=max(ans,g[i]+f[n-i]);
printf("%lld",ans);
return 0;
}

【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈的更多相关文章

  1. bzoj4709: [Jsoi2011]柠檬 斜率优化

    题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...

  2. [BZOJ4709][JSOI2011]柠檬(斜率优化DP)

    显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include< ...

  3. 【bzoj4709】[Jsoi2011]柠檬 斜率优化

    题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...

  4. bzoj 4709 [ Jsoi2011 ] 柠檬 —— 斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GX ...

  5. 【题解】Cats Transport (斜率优化+单调队列)

    [题解]Cats Transport (斜率优化+单调队列) # When Who Problem Lang Verdict Time Memory 55331572 Jun/09/2019 19:1 ...

  6. 【BZOJ 4709】柠檬 斜率优化dp+单调栈

    题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...

  7. BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...

  8. [BZOJ4709][JSOI2011]柠檬 决策单调性优化dp

    题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维 ...

  9. bzoj4709 [jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N  ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...

随机推荐

  1. JBOSS 中oracle-ds.xml的配置模板

    http://blog.csdn.net/bo_hai/article/details/6076979 JBOSS 中oracle-ds.xml的配置模板.   代码模版: <?xml vers ...

  2. Event-Souring模式

    Event-Sourcing模式使用仅附加存储来记录或描写叙述域中数据所採取的动作,从而记录完整的一系列系列事件,而不是仅存储实体的当前状态.由于存储包括全部的事件,能够用来具体化域对象. Event ...

  3. phpMyAdmin安装教程

    phpMyAdmin安装教程: 解压:将下载文件解压缩到 WEB 访问路径下.文件目录如phpmyadmin. 配置文件:然后配置目录下libraries文件下的 config.default.php ...

  4. flink on yarn部分源码解析

    转发请注明原创地址:https://www.cnblogs.com/dongxiao-yang/p/9403427.html flink任务的deploy形式有很多种选择,常见的有standalone ...

  5. CCNA2.0笔记_路由分类

    直连路由:当在路由器上配置了接口的IP地址,并且接口状态为up的时候,路由表中就出现直连路由项 静态路由:静态路由是由管理员手工配置的,是单向的. 默认路由:当路由器在路由表中找不到目标网络的路由条目 ...

  6. CRM认识的误区

    众所周知,CRM,就是平时说的“客户关系管理”,指用CRM来管理 企业与客户之间的关系.纵观整个IT圈子,做CRM的厂商比比皆是,每个厂商都有自己的产品宣言,令人眼花缭乱.但是领很多老板们不解的是,我 ...

  7. 解决linux下/etc/rc.local开机器不执行的原因

    前不久因项目需要写了开机启动其他程序的shell脚本,因工作忙,调试完给了技术支持人员,也没去注意过. 到后来,有几台服务器突然被重启了,这时候领导问,怎么开机启动的脚本没起作用,还被批了一顿,哎,做 ...

  8. thinkphp5 No input file specified.

    .htaccess文件中的 RewriteRule ^(.*)$ index.php/$1 [QSA,PT,L] 在默认情况下会导致No input file specified. 修改成 Rewri ...

  9. spring-boot启动注解@EnableAutoConfiguration

    springboot很多依赖插件是只要有依赖,就会读取相关配置,如果读取不到,就会使用默认的,可能会报错,但是又在项目中不好排除就可以使用 @EnableAutoConfiguration 注解.启动 ...

  10. zend studio 10.6.2 字体大小 设置

    如果汉化的:窗体-->常规-->外观-->颜色和字体-->基本-->文字字体  点击编辑 如果未汉化:Window->Preferences->General ...