【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈
【BZOJ4709】[Jsoi2011]柠檬
Description
Input
Output
Sample Input
2
2
5
2
3
Sample Output
//Flute 先从左端取下 4 只贝壳,它们的大小为 2, 2, 5, 2。选择 s0 = 2,那么这一段里有 3 只大小为 s0 的贝壳,通过魔法可以得到 2×3^2 = 18 只柠檬。再从右端取下最后一只贝壳,通过魔法可以得到 1×3^1 = 3 只柠檬。总共可以得到 18 + 3 = 21 只柠檬。没有比这更优的方案了。
题解:大爷说他从来没做过用单调栈优化的斜率优化,唯一的一道还是他自己出的,不过今天我也算是见过第一道这样的题了。
首先,从两边进行操作可以看成只从一边进行操作,然后我们将原序列反过来再做一遍就行了。
其次,每次施魔法时,区间的左端点和右端点一定都是相同种类的贝壳,这告诉我们应该将每种颜色放到一起处理。然后可以列出DP方程:
$f[i]=max{f[j-1]+(s[i]-s[j]+1)^2*color}$。
其中s[i]表示i这个颜色的前缀和,然后移项
$f[j-1]+(s[j]-1)^2*color=2*s[i]*color*(s[j]-1)+f[i]-s[i]*v[i]$
发现x单调递增,y单调递增,k也单调递增,求的还是上凸包!所以用对于每个颜色都用一个单调栈维护即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#define y(_) (f[(_)-1]+(s[_]-1)*(s[_]-1)*j)
#define x(_) (s[_]-1)
#define k (2*s[i]*j)
using namespace std;
const int maxn=100010;
typedef long long ll;
int n,m;
ll ans;
int t[maxn],last[maxn],pre[maxn];
ll v[maxn],s[maxn],f[maxn],g[maxn];
vector<int> st[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,j;
for(i=1;i<=n;i++) v[i]=rd(),pre[i]=last[v[i]],last[v[i]]=i,s[i]=s[pre[i]]+1,m=max(m,(int)v[i]);
for(i=1;i<=m;i++) t[i]=-1;
for(i=1;i<=n;i++)
{
j=v[i];
while(t[j]>0&&(y(i)-y(st[j][t[j]]))*(x(st[j][t[j]])-x(st[j][t[j]-1]))>=(y(st[j][t[j]])-y(st[j][t[j]-1]))*(x(i)-x(st[j][t[j]]))) t[j]--,st[j].erase(st[j].end()-1);
t[j]++,st[j].push_back(i);
while(t[j]>0&&(y(st[j][t[j]])-y(st[j][t[j]-1]))<=k*(x(st[j][t[j]])-x(st[j][t[j]-1]))) t[j]--,st[j].erase(st[j].end()-1);
g[i]=f[i]=f[st[j][t[j]]-1]+(s[i]-s[st[j][t[j]]]+1)*(s[i]-s[st[j][t[j]]]+1)*j;
}
for(i=1;(i<<1)<=n;i++) swap(v[i],v[n-i+1]);
memset(last,0,sizeof(last));
for(i=1;i<=n;i++) pre[i]=last[v[i]],last[v[i]]=i,s[i]=s[pre[i]]+1;
for(i=1;i<=m;i++) st[i].clear(),t[i]=-1;
for(i=1;i<=n;i++)
{
j=v[i];
while(t[j]>0&&(y(i)-y(st[j][t[j]]))*(x(st[j][t[j]])-x(st[j][t[j]-1]))>=(y(st[j][t[j]])-y(st[j][t[j]-1]))*(x(i)-x(st[j][t[j]]))) t[j]--,st[j].erase(st[j].end()-1);
t[j]++,st[j].push_back(i);
while(t[j]>0&&(y(st[j][t[j]])-y(st[j][t[j]-1]))<=k*(x(st[j][t[j]])-x(st[j][t[j]-1]))) t[j]--,st[j].erase(st[j].end()-1);
f[i]=f[st[j][t[j]]-1]+(s[i]-s[st[j][t[j]]]+1)*(s[i]-s[st[j][t[j]]]+1)*j;
}
ans=0;
for(i=0;i<=n;i++) ans=max(ans,g[i]+f[n-i]);
printf("%lld",ans);
return 0;
}
【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈的更多相关文章
- bzoj4709: [Jsoi2011]柠檬 斜率优化
题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...
- [BZOJ4709][JSOI2011]柠檬(斜率优化DP)
显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include< ...
- 【bzoj4709】[Jsoi2011]柠檬 斜率优化
题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...
- bzoj 4709 [ Jsoi2011 ] 柠檬 —— 斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GX ...
- 【题解】Cats Transport (斜率优化+单调队列)
[题解]Cats Transport (斜率优化+单调队列) # When Who Problem Lang Verdict Time Memory 55331572 Jun/09/2019 19:1 ...
- 【BZOJ 4709】柠檬 斜率优化dp+单调栈
题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...
- BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...
- [BZOJ4709][JSOI2011]柠檬 决策单调性优化dp
题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维 ...
- bzoj4709 [jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...
随机推荐
- sqlite 小刀 初试
SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含在一个相对小的C库中.它是D.RichardHipp建立的公有领域项目.它的设计目标是嵌入式的,而且目前已经在很多嵌入式产 ...
- ajax跨域--jsop方法
1.什么是JSONP? 要了解JSONP,不得不提一下JSON,那么什么是json ? json简单说就是javascript中的对象和数组,所以这两种结构就是对象和数组两种结构,通过这两种结构可以表 ...
- DataURL与File,Blob,canvas对象之间的互相转换的Javascript (未完)
canvas转换为dataURL (从canvas获取dataURL) var dataurl = canvas.toDataURL('image/png'); var dataurl2 = canv ...
- C++程序设计项目开发——银行自己主动提款机(二)
函数的有关知识在后面章节会讲到,先提前了解下.在没有系统的学习完之前,咱们先来模仿着写一个样例,尝试这样的有效的学习方法. 尝试下这种学习方法. 显示功能选项 1.查询 2.取款 3.存款 4.转 ...
- JAVA Socket 底层是怎样基于TCP/IP 实现的???
首先必须明确:TCP/IP模型中有四层结构: 应用层(Application Layer).传输层(Transport Layer).网络层(Internet Layer ).链路层( ...
- KVC之-setValue:forKey:方法实现原理与验证
KVC之-setValue:forKey:方法实现原理与验证 - (void)setValue:(id)value forKey:(NSString *)key方法,实现原理与验证 功能:使用一个字符 ...
- 日期在苹果手机上显示NaN的处理方法
注意两点即可: 1.苹果只认识 yyyy/mmmm/dddd/ 这类格式的日期 2.如果输出后还要进行处理日期对比,苹果默认会带中文字,如:年月日,需要转成上面1当中的日期格式在转时间戳进行比较 G ...
- redis 服务相关
一 什么是redis Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开 ...
- 0049 MyBatis关联映射--一对一关系
世上的事务总不是孤立存在的,表现在Java类里面,则是类与类之间的关系,比如继承is-a.依赖use-a.关联has-a,反映在数据库中,则是表与表之间的关系,比如外键 关联关系存在着以下几种类型:一 ...
- C# 时间格式 yyyy/mm/dd
今天遇到个问题在C#中将日期格式设置为yyyy/MM/dd,我是这样写的: DateTime.Now.ToString("yyyy/MM/dd"); 可是获取到的日期还是显示yyy ...