SGU 438 The Glorious Karlutka River =)(最大流)
Description
A tourist can move up to D meters in any direction at one jump. One jump takes exactly one second. tourists know that the river is W meters wide, and they have estimated the coordinates of rubbish piles ( Xi, Yi) and the capacity of each pile ( Ci, the maximum number of tourists that this pile can hold at the same time). Rubbish piles are not very large and can be represented as points. The river flows along the X axis. tourists start on the river bank at 0 by Y axis. The Ycoordinate of the opposite bank is W.
tourists would like to know if they can get to the opposite bank of the river, and how long it will take.
Input
Output
题目大意:M 个人要过河,,河宽为 W。河上有N个垃圾,给出垃圾的坐标以及垃圾能同时容纳的人数,现在这 M 个人一下能跳距离D,问最少需要多少时间才可以使所有人到达对岸。跳一步一秒。 (开始人都在 X 轴上.对岸可以看为 Y =W 的一条直线)
思路:二分答案,判定性的最大流。最少用时间1到达对岸,最后用时间N+M到达对岸(假设要经过全部垃圾并且全部垃圾都只能站一个人)。假设现在二分的答案为mid,那么对于每个垃圾分成mid-1份,每份代表一个时间,再每个时间分成两份P、P'。如果从X轴能走到某点P,那么对所有时间,S连一条边到P。如果从某点P能走到对岸,那么对所有时间,P'连一条边到T。然后对所有时间每个点P连一条边到P',容量为该点能同时站多少人。最后所有距离在D以内的,对每个时间t,连边(P,t)→(Q,t+1),(Q,t)→(P,t+1)。最大流即为用mid的时间能过去多少人。二分答案即可。这种做法正确是因为:每个点的时间t只能走到t+1的时间,而在每个时间里通过某一点的流量不大于该点的容量,在任何时刻都能从S出发和到达T。
另外
SAP(62MS):
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int MAXN = * * ;
const int MAXE = MAXN * ;
const int INF = 0x7fff7fff; struct SAP {
int vis[MAXN], head[MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int to[MAXE], flow[MAXE], next[MAXE];
int ecnt, st, ed; void init(int ss, int tt) {
memset(head, , sizeof(head));
ecnt = ;
st = ss; ed = tt;
} void addEdge(int u,int v,int f) {
to[ecnt] = v; flow[ecnt] = f; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
} int Max_flow() {
int ans = , minFlow = INF, n = ed, u;
for (int i = ; i <= n; ++i){
cur[i] = head[i];
gap[i] = dis[i] = ;
}
u = pre[st] = st;
gap[] = n;
while (dis[st] < n){
bool flag = false;
for (int &p = cur[u]; p; p = next[p]){
int v = to[p];
if (flow[p] > && dis[u] == dis[v] + ){
flag = true;
minFlow = min(minFlow, flow[p]);
pre[v] = u;
u = v;
if(u == ed){
ans += minFlow;
while (u != st){
u = pre[u];
flow[cur[u]] -= minFlow;
flow[cur[u] ^ ] += minFlow;
}
minFlow = INF;
}
break;
}
}
if (flag) continue;
int minDis = n-;
for (int p = head[u]; p; p = next[p]){
int v = to[p];
if (flow[p] && dis[v] < minDis){
minDis = dis[v];
cur[u] = p;
}
}
if (--gap[dis[u]] == ) break;
gap[dis[u] = minDis+]++;
u = pre[u];
}
return ans;
}
} G; const int MAX = ; struct Point {
int x, y, c;
}; int dis2(const Point &a, const Point &b) {
int xx = a.x - b.x, yy = a.y - b.y;
return xx * xx + yy * yy;
} int n, m, d, w;
Point rub[MAX]; #define FOR(i, s, t) for(int i = s; i <= t; ++i)
#define get_num(i, t) ((i - 1) * 2 * (mid - 1) + 2 * (t - 1) + 1) void solve() {
int left = , right = n + m + ;
while(left < right) {
int mid = (left + right) >> ;
int ss = n * (mid - ) * + , st = ss + , tt = ss + ;
G.init(st, tt);
G.addEdge(st, ss, m);
FOR(i, , n) {
if(rub[i].y <= d) {
FOR(t, , mid - ) G.addEdge(ss, get_num(i, t), INF);
}
if(rub[i].y + d >= w) {
FOR(t, , mid - ) G.addEdge(get_num(i, t) + , tt, INF);
}
}
FOR(i, , n) FOR(t, , mid - ) {
int num = get_num(i, t);
G.addEdge(num, num + , rub[i].c);
if(t < mid - ) G.addEdge(num + , num + , INF);
}
FOR(i, , n) FOR(j, , n) {
if(i == j || dis2(rub[i], rub[j]) > d * d) continue;
FOR(t, , mid - ) G.addEdge(get_num(i, t) + , get_num(j, t + ), INF);
}
int ans = G.Max_flow();
if(ans < m) left = mid + ;
else right = mid;
//printf("%d %d\n", mid, ans); system("pause");
}
if(right == n + m + ) puts("IMPOSSIBLE");
else printf("%d\n", right);
} int main() {
scanf("%d%d%d%d", &n, &m, &d, &w);
FOR(i, , n) scanf("%d%d%d", &rub[i].x, &rub[i].y, &rub[i].c);
FOR(i, , n) if(rub[i].c > m) rub[i].c = m;
if(w <= d) printf("1\n");
else solve();
}
DINIC(15MS):
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int MAXN = * * ;
const int MAXE = MAXN * ;
const int INF = 0x7fff7fff; struct Dinic {
int n, m, st, ed, ecnt;
int vis[MAXN], head[MAXN];
int cur[MAXN], d[MAXN];
int to[MAXE], next[MAXE], flow[MAXE]; void init(){
memset(head,,sizeof(head));
ecnt = ;
} void addEdge(int u,int v,int f) {
to[ecnt] = v; flow[ecnt] = f; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
} bool bfs() {
memset(vis, , sizeof(vis));
queue<int> que; que.push(st);
d[st] = ; vis[st] = true;
while(!que.empty()){
int u = que.front(); que.pop();
for(int p = head[u]; p; p = next[p]){
int v = to[p];
if (!vis[v] && flow[p] > ){
vis[v] = ;
d[v] = d[u] + ;
que.push(v);
if(v == ed) return true;
}
}
}
return vis[ed];
} int dfs(int u, int a) {
if(u == ed || a == ) return a;
int outflow = , f;
for(int &p = cur[u]; p; p = next[p]){
int v = to[p];
if(d[u] + == d[v] && (f = dfs(v, min(a, flow[p]))) > ){
flow[p] -= f;
flow[p ^ ] += f;
outflow += f;
a -= f;
if(a == ) break;
}
}
return outflow;
} int Maxflow(int ss, int tt, int nn) {
st = ss; ed = tt;
int ans = ;
while(bfs()){
for(int i = ; i <= ed; ++i) cur[i] = head[i];
ans += dfs(st, INF);
}
return ans;
}
} G; const int MAX = ; struct Point {
int x, y, c;
}; int dis2(const Point &a, const Point &b) {
int xx = a.x - b.x, yy = a.y - b.y;
return xx * xx + yy * yy;
} int n, m, d, w;
Point rub[MAX]; #define FOR(i, s, t) for(int i = s; i <= t; ++i)
#define get_num(i, t) ((i - 1) * 2 * (mid - 1) + 2 * (t - 1) + 1) void solve() {
int left = , right = n + m + ;
while(left < right) {
int mid = (left + right) >> ;
int ss = n * (mid - ) * + , st = ss + , tt = ss + ;
G.init();
G.addEdge(st, ss, m);
FOR(i, , n) {
if(rub[i].y <= d) {
FOR(t, , mid - ) G.addEdge(ss, get_num(i, t), INF);
}
if(rub[i].y + d >= w) {
FOR(t, , mid - ) G.addEdge(get_num(i, t) + , tt, INF);
}
}
FOR(i, , n) FOR(t, , mid - ) {
int num = get_num(i, t);
G.addEdge(num, num + , rub[i].c);
if(t < mid - ) G.addEdge(num + , num + , INF);
}
FOR(i, , n) FOR(j, , n) {
if(i == j || dis2(rub[i], rub[j]) > d * d) continue;
FOR(t, , mid - ) G.addEdge(get_num(i, t) + , get_num(j, t + ), INF);
}
int ans = G.Maxflow(st, tt, tt);
if(ans < m) left = mid + ;
else right = mid;
//printf("%d %d\n", mid, ans); system("pause");
}
if(right == n + m + ) puts("IMPOSSIBLE");
else printf("%d\n", right);
} int main() {
scanf("%d%d%d%d", &n, &m, &d, &w);
FOR(i, , n) scanf("%d%d%d", &rub[i].x, &rub[i].y, &rub[i].c);
FOR(i, , n) if(rub[i].c > m) rub[i].c = m;
if(w <= d) printf("1\n");
else solve();
}
BFS+ISAP(15MS):
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int MAXN = * * ;
const int MAXE = MAXN * ;
const int INF = 0x7fff7fff; struct SAP {
int head[MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int to[MAXE], flow[MAXE], next[MAXE];
int ecnt, st, ed, n; void init(int ss, int tt, int nn) {
memset(head, , sizeof(head));
ecnt = ;
st = ss; ed = tt; n = nn;
} void addEdge(int u,int v,int f) {
to[ecnt] = v; flow[ecnt] = f; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if (dis[v] > n && flow[p ^ ] > ) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow() {
int ans = , minFlow = INF, u;
for (int i = ; i <= n; ++i){
cur[i] = head[i];
gap[i] = dis[i] = ;
}
u = pre[st] = st;
//gap[0] = n;
bfs();
while (dis[st] < n){
bool flag = false;
for (int &p = cur[u]; p; p = next[p]){
int v = to[p];
if (flow[p] > && dis[u] == dis[v] + ){
flag = true;
minFlow = min(minFlow, flow[p]);
pre[v] = u;
u = v;
if(u == ed){
ans += minFlow;
while (u != st){
u = pre[u];
flow[cur[u]] -= minFlow;
flow[cur[u] ^ ] += minFlow;
}
minFlow = INF;
}
break;
}
}
if (flag) continue;
int minDis = n-;
for (int p = head[u]; p; p = next[p]){
int v = to[p];
if (flow[p] && dis[v] < minDis){
minDis = dis[v];
cur[u] = p;
}
}
if (--gap[dis[u]] == ) break;
gap[dis[u] = minDis+]++;
u = pre[u];
}
return ans;
}
} G; const int MAX = ; struct Point {
int x, y, c;
}; int dis2(const Point &a, const Point &b) {
int xx = a.x - b.x, yy = a.y - b.y;
return xx * xx + yy * yy;
} int n, m, d, w;
Point rub[MAX]; #define FOR(i, s, t) for(int i = s; i <= t; ++i)
#define get_num(i, t) ((i - 1) * 2 * (mid - 1) + 2 * (t - 1) + 1) void solve() {
int left = , right = n + m + ;
while(left < right) {
int mid = (left + right) >> ;
int ss = n * (mid - ) * + , st = ss + , tt = ss + ;
G.init(st, tt, tt);
G.addEdge(st, ss, m);
FOR(i, , n) {
if(rub[i].y <= d) {
FOR(t, , mid - ) G.addEdge(ss, get_num(i, t), INF);
}
if(rub[i].y + d >= w) {
FOR(t, , mid - ) G.addEdge(get_num(i, t) + , tt, INF);
}
}
FOR(i, , n) FOR(t, , mid - ) {
int num = get_num(i, t);
G.addEdge(num, num + , rub[i].c);
if(t < mid - ) G.addEdge(num + , num + , INF);
}
FOR(i, , n) FOR(j, , n) {
if(i == j || dis2(rub[i], rub[j]) > d * d) continue;
FOR(t, , mid - ) G.addEdge(get_num(i, t) + , get_num(j, t + ), INF);
}
int ans = G.Max_flow();
if(ans < m) left = mid + ;
else right = mid;
//printf("%d %d\n", mid, ans); system("pause");
}
if(right == n + m + ) puts("IMPOSSIBLE");
else printf("%d\n", right);
} int main() {
scanf("%d%d%d%d", &n, &m, &d, &w);
FOR(i, , n) scanf("%d%d%d", &rub[i].x, &rub[i].y, &rub[i].c);
FOR(i, , n) if(rub[i].c > m) rub[i].c = m;
if(w <= d) printf("1\n");
else solve();
}
SGU 438 The Glorious Karlutka River =)(最大流)的更多相关文章
- SGU 438 The Glorious Karlutka River =) ★(动态+分层网络流)
[题意]有一条东西向流淌的河,宽为W,河中有N块石头,每块石头的坐标(Xi, Yi)和最大承受人数Ci已知.现在有M个游客在河的南岸,他们想穿越这条河流,但是每个人每次最远只能跳D米,每跳一次耗时1秒 ...
- SGU 0438 The Glorious Karlutka River =) 动态流
题目大意:有一条东西向流淌的河,宽为W,河中有N块石头,每块石头的坐标(Xi, Yi)和最大承受人数Ci已知.现在有M个游客在河的南岸,他们想穿越这条河流,但是每个人每次最远只能跳D米,每跳一次耗时1 ...
- SGU438 The Glorious Karlutka River =)(最大流)
题目大概说有m个人要过一条宽W的河,人最远跳远距离是d,河上有n个垃圾堆,每个垃圾堆都有坐标和同一时间能容纳的人数,问所有人最少要跳几次才能跳到对岸. 又是一题根据时间拆点的最大流. 二分时间建容量网 ...
- The Glorious Karlutka River =)
sgu438:http://acm.sgu.ru/problem.php?contest=0&problem=438 题意:有一条东西向流淌的河,宽为 W,河中有 N 块石头,每块石头的坐标( ...
- SGU438 The Glorious Karlutka River =)
传送门 sgu原来搬到cf了呀点了好几个链接才找到233 传说中的动态流(?) 反正很暴力就对了QwQ 有容量限制->拆点 对于每个点拆成入点和出点 时间限制->分层 对于每个时刻的每个石 ...
- SGU438_The Glorious Karlutka River =)
好题,有一些人在河的一边,想通过河里的某些点跳到对岸去.每个点最多只能承受一定数量的人,每人跳跃一次需要消耗一个时间.求所有人都过河的最短时间. 看网上说是用了什么动态流的神奇东东.其实就是最大流吧, ...
- SGU 185 Two shortest 最短路+最大流
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21068 Yesterday Vasya and Petya qua ...
- sgu 176 上下界网络流最小可行流带输出方案
算法步骤: 1. 先将原图像最大可行流那样变换,唯一不同的是不加dst->src那条边来将它变成无源无汇的网络流图.直接跑一边超级源到超级汇的最大流. 2. 加上刚才没有加上的那条边p 3. 再 ...
- Soj题目分类
-----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...
随机推荐
- keepalived+haproxy 安装配置
1.安装配置keepalived 修改配置文件/etc/keepalived/keepalived.conf ! Configuration File for keepalived global_de ...
- 使用WIn10自带的Linux子系统
最近一直有安装虚拟机的想法,今天刚刚知道win10有自带的Linux子系统,就准备试一下: 首先要保证自己的电脑处于开发者选项: 然后就要在控制面板的程序和功能页面点击“启用或者关闭WIndows功能 ...
- Django学习笔记2
1.BookInfo.objects.all() objects:是Manager类型的对象,用于与数据库进行交互 当定义模型类时没有指定管理器,则Django会为模型类提供一个名为objects的管 ...
- Django的MVT的思路
1.先上两张图片 2.我的理解 view在MVT框架里面,起到的是中间调度的作用. a.在diango里面有个关键性路径的配置 就是在django2.0前的url和在2.0后的path. 为避免一个项 ...
- 【rabbitmq消息队列配置】
#erlang语言支持包 #rabbitmq-server安装支持 #添加用户 #删除用户 #用户角色 #启动 #登录 #管理界面 #guest登录不了: Rabbitmq.conf文件添加 #开启管 ...
- 【Java】集合遍历--List和Map的多种遍历方式
1. List的两种遍历方式 package com.nova.test; import java.util.ArrayList; import java.util.Iterator; import ...
- Xshell配色方案推荐
使用方法: 新建mycolor.xcs文件 复制粘贴如下代码,将文件导入,修改自己喜欢的字体即可 [mycolor] text=00ff80 cyan(bold)=00ffff text(bold)= ...
- 在线预览word,excel文档
Google Doc 示例:https://jsfiddle.net/7xr419yb/ Microsoft Office 示例:https://jsfiddle.net/gcuzq343/
- Hadoop2学习路程-HDFS
什么是Hadoop HDFS? Hadoop 分布式文件系统是世界上最可靠的文件系统.HDFS可以再大量硬件组成的集群中存储大文件. 它的设计原则是趋向于存储少量的大文件,而不是存储大量的小文件. 即 ...
- MAVLink功能开发,移植教程。
MAVLink功能开发 -----------------本文由"智御电子"提供,同时提供视频移植教程,以便电子爱好者交流学习.---------------- 1.MAVLink ...