Description

Updog is watching a plane object with a telescope. The field of vision in the telescope can be described as a circle. The center is at the origin and the radius is R. The object can be seen as a simple polygon of N vertexes. Updog wants to know the area of the part of the object that can be seen in the telescope.

Input

The input will contain several test cases. For each case:
The first line contains only one real number R
The second line contains an integer N. The following N lines contain two real numbers xi and yi each, which describe the coordinates of a vertex. Two vertexes in adjacent lines are also adjacent on the polygon. 
Constraints: 3 ≤ N ≤50, 0.1 ≤ R ≤1000, -1000 ≤ xiyi ≤ 1000

Output

For each test case, output one real number on a separate line, which is the area of the part that can be seen. The result should be rounded to two decimal places.

 
题目大意:给一个圆心在原点的圆,半径为r。再给一个简单多边形,问这个简单多边形和圆的公共面积是多少。
思路:跟POJ2986一个思路,把简单多边形的每一个点和原点连线,就把这个多边形和圆的交变成了多个三角形与圆的交,根据有向面积的思路,加加减减就可以得到公共面积。
PS:所谓简单多边形,是指所有边都不相交的多边形。
PS2:之前求直线与圆的交点的时候,没留意到-EPS<delta<0,然后要求sqrt(delta)的情况……WA了很多很多次……计算几何真是可怕……
 
代码(0MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define sqr(x) ((x) * (x)) const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const double &b) const {
return Point(x * b, y * b);
}
Point operator / (const double &b) const {
return Point(x / b, y / b);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
double length() {
return sqrt(x * x + y * y);
}
double angle() {
return atan2(y, x);
}
Point unit() {
return *this / length();
}
void makeAg() {
ag = atan2(y, x);
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn right
double cross(const Point &sp, const Point &ed, const Point &op) {
return cross(sp - op, ed - op);
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} double cosIncludeAngle(const Point &a, const Point &b, const Point &o) {
Point p1 = a - o, p2 = b - o;
return (p1 * p2) / (p1.length() * p2.length());
} double includedAngle(const Point &a, const Point &b, const Point &o) {
return acos(cosIncludeAngle(a, b, o));
/*
double ret = abs((a - o).angle() - (b - o).angle());
if(sgn(ret - PI) > 0) ret = 2 * PI - ret;
return ret;
*/
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(Point(sgn(c) > ? - : , INF), Point(, INF));
if(sgn(a) == ) return Line(Point(sgn(b), -c/b), Point(, -c/b));
if(sgn(b) == ) return Line(Point(-c/a, ), Point(-c/a, sgn(a)));
if(b < ) return Line(Point(, -c/b), Point(, -(a + c) / b));
else return Line(Point(, -(a + c) / b), Point(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st)) == );
} bool isInSegRec(const Seg &s, const Point &p) {
return sgn(min(s.st.x, s.ed.x) - p.x) <= && sgn(p.x - max(s.st.x, s.ed.x)) <=
&& sgn(min(s.st.y, s.ed.y) - p.y) <= && sgn(p.y - max(s.st.y, s.ed.y)) <= ;
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} double Point_to_Seg(const Point &p, const Seg &L) {
if(sgn((L.ed - L.st) * (p - L.st)) < ) return dist(p, L.st);
if(sgn((L.st - L.ed) * (p - L.ed)) < ) return dist(p, L.ed);
return Point_to_Line(p, L);
} double Seg_to_Seg(const Seg &a, const Seg &b) {
double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
return min(ans1, ans2);
} struct Circle {
Point c;
double r;
Circle() {}
Circle(Point c, double r): c(c), r(r) {}
void read() {
c.read();
scanf("%lf", &r);
}
double area() const {
return PI * r * r;
}
bool contain(const Circle &rhs) const {
return sgn(dist(c, rhs.c) + rhs.r - r) <= ;
}
bool contain(const Point &p) const {
return sgn(dist(c, p) - r) <= ;
}
bool intersect(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) < ;
}
bool tangency(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) == ;
}
Point pos(double angle) const {
Point p = Point(c.x + r, c.y);
return rotate(p, angle, c);
}
}; double CommonArea(const Circle &A, const Circle &B) {
double area = 0.0;
const Circle & M = (A.r > B.r) ? A : B;
const Circle & N = (A.r > B.r) ? B : A;
double D = dist(M.c, N.c);
if((D < M.r + N.r) && (D > M.r - N.r)) {
double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
double alpha = * acos(cosM);
double beta = * acos(cosN);
double TM = 0.5 * M.r * M.r * (alpha - sin(alpha));
double TN = 0.5 * N.r * N.r * (beta - sin(beta));
area = TM + TN;
}
else if(D <= M.r - N.r) {
area = N.area();
}
return area;
} int intersection(const Seg &s, const Circle &cir, Point &p1, Point &p2) {
double angle = cosIncludeAngle(s.ed, cir.c, s.st);
//double angle1 = cos(includedAngle(s.ed, cir.c, s.st));
double B = dist(cir.c, s.st);
double a = , b = - * B * angle, c = sqr(B) - sqr(cir.r);
double delta = sqr(b) - * a * c;
if(sgn(delta) < ) return ;
if(sgn(delta) == ) delta = ;
double x1 = (-b - sqrt(delta)) / ( * a), x2 = (-b + sqrt(delta)) / ( * a);
Vector v = (s.ed - s.st).unit();
p1 = s.st + v * x1;
p2 = s.st + v * x2;
return + sgn(delta);
} double CommonArea(const Circle &cir, Point p1, Point p2) {
if(p1 == cir.c || p2 == cir.c) return ;
if(cir.contain(p1) && cir.contain(p2)) {
return area(cir.c, p1, p2);
} else if(!cir.contain(p1) && !cir.contain(p2)) {
Point q1, q2;
int t = intersection(Line(p1, p2), cir, q1, q2);
if(t == ) {
double angle = includedAngle(p1, p2, cir.c);
return 0.5 * sqr(cir.r) * angle;
} else {
double angle1 = includedAngle(p1, p2, cir.c);
double angle2 = includedAngle(q1, q2, cir.c);
if(isInSegRec(Seg(p1, p2), q1))return 0.5 * sqr(cir.r) * (angle1 - angle2 + sin(angle2));
else return 0.5 * sqr(cir.r) * angle1;
}
} else {
if(cir.contain(p2)) swap(p1, p2);
Point q1, q2;
intersection(Line(p1, p2), cir, q1, q2);
double angle = includedAngle(q2, p2, cir.c);
double a = area(cir.c, p1, q2);
double b = 0.5 * sqr(cir.r) * angle;
return a + b;
}
} struct Triangle {
Point p[];
Triangle() {}
Triangle(Point *t) {
for(int i = ; i < ; ++i) p[i] = t[i];
}
void read() {
for(int i = ; i < ; ++i) p[i].read();
}
double area() const {
return ::area(p[], p[], p[]);
}
Point& operator[] (int i) {
return p[i];
}
}; double CommonArea(Triangle tir, const Circle &cir) {
double ret = ;
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
return abs(ret);
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
};
//the convex hull is clockwise
void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
double dia = ;
int q = ;
for(int i = ; i < res.n - ; ++i) {
while(sgn(cross(res.p[i], res.p[q + ], res.p[i + ]) - cross(res.p[i], res.p[q], res.p[i + ])) > )
q = (q + ) % (res.n - );
if(sgn(dist(res.p[i], res.p[q]) - dia) > ) {
dia = dist(res.p[i], res.p[q]);
ix = i; jx = q;
}
if(sgn(dist(res.p[i + ], res.p[q]) - dia) > ) {
dia = dist(res.p[i + ], res.p[q]);
ix = i + ; jx = q;
}
}
return dia;
}
//a and b must be clockwise, find the minimum distance between two convex hull
double half_rotating_calipers(Poly &a, Poly &b) {
int sa = , sb = ;
for(int i = ; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < ) sa = i;
for(int i = ; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < ) sb = i;
double tmp, ans = dist(a.p[], b.p[]);
for(int i = ; i < a.n; ++i) {
while(sgn(tmp = cross(a.p[sa], a.p[sa + ], b.p[sb + ]) - cross(a.p[sa], a.p[sa + ], b.p[sb])) > )
sb = (sb + ) % (b.n - );
if(sgn(tmp) < ) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + ])));
else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + ]), Seg(b.p[sb], b.p[sb + ])));
sa = (sa + ) % (a.n - );
}
return ans;
} double rotating_calipers(Poly &a, Poly &b) {
return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
} /*******************************************************************************************/ Point p[MAXN];
Circle cir;
double r;
int n; int main() {
while(scanf("%lf", &r) != EOF) {
scanf("%d", &n);
for(int i = ; i < n; ++i) p[i].read();
p[n] = p[];
cir = Circle(Point(, ), r);
double ans = ;
for(int i = ; i < n; ++i)
ans += sgn(cross(p[i], Point(, ), p[i + ])) * CommonArea(cir, p[i], p[i + ]);
printf("%.2f\n", fabs(ans));
}
}

POJ 3675 Telescope(简单多边形和圆的面积交)的更多相关文章

  1. POJ 3675 Telescope 简单多边形和圆的面积交

    这道题得控制好精度,不然会贡献WA  QAQ 还是那个规则: int sgn(double x){ if(x > eps) return 1; else if(x < - eps) ret ...

  2. POJ 3675 Telescope

    题意:给定一个不自交的多边形,要求和圆心在原点的圆的面积交. 思路:同POJ2986,是加强版 代码: #include<algorithm> #include<cstdio> ...

  3. poj 3675 Telescope (圆与多边形面积交)

    3675 -- Telescope 再来一题.这题的代码还是继续完全不看模板重写的. 题意不解释了,反正就是一个单纯的圆与多边形的交面积. 这题的精度有点搞笑.我用比较高的精度来统计面积,居然wa了. ...

  4. poj3675 求多边形与圆的面积交

    题意:给出多边形的顶点坐标.圆的圆心坐标和半径,求面积交 sol:又是模板题啦= = 注意poj的C++好像认不出hypot函数,要稍微改写一下. hypot(double x,double y):即 ...

  5. hdu 5120 Intersection 两个圆的面积交

    Intersection Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others) P ...

  6. HDU 5120 Intersection (圆的面积交)

    题意:给定两个圆环,求两个圆环的面积交. 析:很容易知道,圆环面积交就是,大圆与大圆面积交 - 大圆和小圆面积交 - 小圆和大圆面积交 + 小圆和小圆面积交. 代码如下: #pragma commen ...

  7. HDU - 2892:area (圆与多边形交 求面积)

    pro:飞行员去轰炸一个小岛,给出炸弹落地点的位置信息,以及轰炸半径:按顺时针或者逆时针给出小岛的边界点. 求被轰炸的小岛面积. sol:即是求圆和多边形的面积交. (只会套板子的我改头换面,先理解然 ...

  8. Harry Potter and J.K.Rowling(半平面交+圆和矩形交)

    Harry Potter and J.K.Rowling http://acm.hdu.edu.cn/showproblem.php?pid=3982 Time Limit: 2000/1000 MS ...

  9. poj 2546(两圆公共面积)

    Circular Area Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5682   Accepted: 2225 Des ...

随机推荐

  1. 『ACM C++』 PTA 天梯赛练习集L1 | 048-49

    今日刷题048-049 ------------------------------------------------L1-048---------------------------------- ...

  2. CF考古活动

    Codeforces Beta Round #1 http://codeforces.com/contest/1 A.测试用水题,呵呵.给三个数nma,求ceil(n/a)*ceil(m/a). 长整 ...

  3. QT 防止FTP 上传软件在断连处 Crash

    前段时间发现项目中的上传FTP软件有可能会在从服务器申请断连时Crash, 所以加了一个Timer. 由于项目代码行数过大, 此处上传部分代码片段. timeoutTimer = new QTimer ...

  4. TinyMCE插件:RESPONSIVE filemanager 9 文件名统一格式化

    上传图片方法(filemanager/UploadHandler.php) 在上传图片的函数中查看,发现$file->name是一个完整的[文件名.后缀名],所以使用explode(),文件名和 ...

  5. PHP Mysql字符集utf8mb4支持Emoji表情

    项目开发中经常会遇到用户在评论或者发表文章的时候会打一些表情在里面,如果我们在开发中不去做一些处理的话,表情会出不来的,甚至是报错,下面简单介绍处理方式.原文地址:小时刻个人博客:http://sma ...

  6. 小程序开发-9-Behavior行为与加入缓存系统优化流行页面

    Behavior行为与加入缓存系统优化流行页面 navi组件与移动端触碰区域探讨 触碰区域优化 设计师切图切大点,多余部分变成透明色 前端将可触碰区域变大 解决向左箭头变灰,向右变灰 禁用事件的技巧 ...

  7. [POJ3090]Visible Lattice Points(欧拉函数)

    答案为3+2*∑φ(i),(i=2 to n) Code #include <cstdio> int T,n,A[1010]; void Init(){ for(int i=2;i< ...

  8. C# 面试题 (二)

    1. 什么是C#? C#是微软公司发布的一种面向对象的.运行于.NET Framework之上的高级程序设计语言.C#是一种安全的.稳定的.简单的.优雅的,由C和C++衍生出来的面向对象的编程语言. ...

  9. .Net 面试题 汇总(五)

    1.简述javascript中的“=.==.===”的区别? =赋值 ==比较是否一般相等 "3"==3 //会做类型的隐式转换,true ===比较是否严格相等 "3& ...

  10. react路由按需加载方法

    使用router4之后以前的按需加载方法require.ensure 是不好使了. 所以我们改用react-loadable插件做按需加载. 第一步: yarn add react-loadable ...