Frogs

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 4904    Accepted Submission(s): 1631

Problem Description
There are m stones lying on a circle, and n frogs are jumping over them.
The stones are numbered from 0 to m−1 and the frogs are numbered from 1 to n. The i-th frog can jump over exactly ai stones in a single step, which means from stone j mod m to stone (j+ai) mod m (since all stones lie on a circle).

All frogs start their jump at stone 0, then each of them can jump as many steps as he wants. A frog will occupy a stone when he reach it, and he will keep jumping to occupy as much stones as possible. A stone is still considered ``occupied" after a frog jumped away.
They would like to know which stones can be occupied by at least one of them. Since there may be too many stones, the frogs only want to know the sum of those stones' identifiers.

 
Input
There are multiple test cases (no more than 20), and the first line contains an integer t,
meaning the total number of test cases.

For each test case, the first line contains two positive integer n and m - the number of frogs and stones respectively (1≤n≤104, 1≤m≤109).

The second line contains n integers a1,a2,⋯,an, where ai denotes step length of the i-th frog (1≤ai≤109).

 
Output
For each test case, you should print first the identifier of the test case and then the sum of all occupied stones' identifiers.
 
Sample Input
3
2 12
9 10
3 60
22 33 66
9 96
81 40 48 32 64 16 96 42 72
 
Sample Output
Case #1: 42
Case #2: 1170
Case #3: 1872
 
Source
 

题意就是跳青蛙,通过分析会发现,就是步数a[i]与石头数m,通过gcd(a[i],m)之后,gcd的倍数的和。

因为重复的数只计算一次,所以要去重。

一开始想的是容斥去重,然而还是太捞了,。。。

这道题和队友讨论了3天,还问了学长,发现几个问题:

(1)如果直接枚举gcd的遍历,应该为去重他们的最小公倍数,也就是这样的。

for(ll j=;j<cnt;j++)
{
if(i&(<<j))
temp=temp*g[j]/gcd(temp,g[i]),jishu++;
}

(2)直接gcd的容斥枚举去重会超时,因为极限数据可能要枚举1<<36次,for一次的极限数据个人认为可能就是1e7再带点常数,1<<36次跑不出来,程序会崩。所以这种容斥是不可以的,虽然想法真的很好,但是真的过不去。所以,最后放弃了这种思路,其实还是可以容斥的,但是是有技巧的容斥。

直接看的题解,所以也不好说什么,毕竟是人家的劳动成果,只是分析一下。

做法一:

欧拉函数的延伸用法:小于或等于n的数中,与n互质的数的总和为:φ(n) * n / 2  (n>1)。

做法二:

枚举m的因子个数,这样就会少很多,就不存在超时的问题了。

以上两种做法的具体题解传送门:HDU 5514 Frogs(欧拉函数+数论YY)

直接贴代码吧。

代码1(欧拉函数):

 //欧拉函数的公式求解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii; const double PI=acos(-1.0);
const double eps=1e-;
const ll mod=1e9+;
const int inf=0x3f3f3f3f;
const int maxn=1e5+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); ll a[maxn],n,m; ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
} ll euler(ll n)
{
ll ans=n;
for(int i=;i*i<=n;i++){
if(n%i==){
ans=ans/i*(i-);
while(n%i==) n/=i;
}
}
if(n>) ans=ans/n*(n-);
return ans;
} bool solve(int x)
{
for(int i=;i<n;i++){
if(x%a[i]==) return true;
}
return false;
} int main()
{
int t;
scanf("%d",&t);
for(int cas=;cas<=t;cas++){
memset(a,,sizeof(a));
scanf("%lld%lld",&n,&m);
for(int i=;i<n;i++){
scanf("%d",a+i);
a[i]=gcd(a[i],m);
}
ll ans=;
for(int i=;i*i<=m;i++){
if(m%i) continue;
if(solve(i)) ans+=(ll)euler(m/i)*m/;
if(i*i==m||i==) continue;
if(solve((m/i))) ans+=(ll)euler(i)*m/;
}
printf("Case #%d: %lld\n",cas,ans);
}
}

代码2(容斥原理):

 //容斥定理
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii; const double PI=acos(-1.0);
const double eps=1e-;
const ll mod=1e9+;
const int inf=0x3f3f3f3f;
const int maxn=1e5+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
} ll g[maxn],fac[maxn];
int tp[maxn],num[maxn],vis[maxn]; int main()
{
int t;
scanf("%d",&t);
for(int cas=;cas<=t;cas++){
ll n,m;
scanf("%lld%lld",&n,&m);
int ok=;
for(int i=;i<n;i++){
scanf("%lld",&g[i]);
g[i]=gcd(g[i],m);
if(g[i]==) ok=;
}
if(ok==){
printf("Case #%d: %lld\n",cas,m*(m-)/);
continue;
}
sort(g,g+n);
n=unique(g,g+n)-g;
memset(vis,,sizeof(vis));
memset(num,,sizeof(num));
int cnt=;
for(ll i=;i*i<=m;i++){
if(i*i==m) fac[cnt++]=m/i;
else if(m%i==) fac[cnt++]=i,fac[cnt++]=m/i;
}
sort(fac,fac+cnt);
int cnt1=;
for(int i=;i<n;i++){
if(!vis[i]){
tp[cnt1++]=g[i];
for(int j=;j<n;j++)
if(g[j]%g[i]==) vis[j]=;
}
}
memset(vis,,sizeof(vis));
for(int i=;i<cnt;i++){
for(int j=;j<cnt1;j++){
if(fac[i]%tp[j]==){
vis[i]=;
break;
}
}
}
ll sum=;
for(int i=;i<cnt;i++){
if(num[i]!=vis[i]){
sum+=m*(m/fac[i]-)/*(vis[i]-num[i]);
for(int j=i+;j<cnt;j++)
if(fac[j]%fac[i]==)
num[j]=num[j]+vis[i]-num[i];
}
}
printf("Case #%d: %lld\n",cas,sum);
}
return ;
}

贴一下我们想了3天的错误代码,纪念一下。

代码(错误的):

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii; const double PI=acos(-1.0);
const double eps=1e-;
const ll mod=1e9+;
const int inf=0x3f3f3f3f;
const int maxn=1e5+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
} ll sum(ll x,ll n)
{
ll temp=(n-)/x;
return temp*x+(temp*(temp-)/)*x;
} ll a[maxn]; int main()
{
ll t;
scanf("%lld",&t);
for(int cas=;cas<=t;cas++)
{
ll n,m;
scanf("%lld%lld",&n,&m);
ll h=;
for(int i=;i<n;i++)
{
ll x;
scanf("%lld",&x);
a[h++]=gcd(x,m);
}
vector<ll> g;
sort(a,a+h);
for(int i=h-;i>=;i--){
int flag=;
for(int j=i-;j>=;j--){
if(a[i]%a[j]==) flag=;
}
if(!flag) g.push_back(a[i]);
}
int cnt=g.size();
ll ans=;
for(ll i=;i<(1ll<<cnt);i++)
{
ll temp=,jishu=;
for(ll j=;j<cnt;j++)
{
if(i&(<<j))
temp=temp*g[j]/gcd(temp,g[i]),jishu++;
}
if(jishu==)continue;
if(jishu&) ans+=sum(temp,m);
else ans-=sum(temp,m);
}
printf("Case #%d: %lld\n",cas,ans);
}
}

到此为止,拜拜,再也不看这个题了。

HDU 5514.Frogs-欧拉函数 or 容斥原理的更多相关文章

  1. HDU 5514 Frogs 欧拉函数

    题意: 有\(m(1 \leq m \leq 10^9)\)个石子排成一圈,编号分别为\(0,1,2 \cdots m-1\). 现在在\(0\)号石头上有\(n(1 \leq n \leq 10^4 ...

  2. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. hdu 1695 GCD (欧拉函数、容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. HDU 2824 简单欧拉函数

    1.HDU 2824   The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a ...

  6. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  7. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. GuGuFishtion HDU - 6390 (欧拉函数,容斥)

    GuGuFishtion \[ Time Limit: 1500 ms\quad Memory Limit: 65536 kB \] 题意 给出定义\(Gu(a, b) = \frac{\phi(ab ...

  9. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  10. hdu 6434 Count (欧拉函数)

    题目链接 Problem Description Multiple query, for each n, you need to get $$$$$$ \sum_{i=1}^{n} \sum_{j=1 ...

随机推荐

  1. Beautiful Soup的一些中文资料

    如果你着急用的话,可以看下这个简略版的,非常简单: 转自  人世间http://rsj217.diandian.com/post/2012-11-01/40041235132 当然,强烈推荐你看一下的 ...

  2. [Luogu 3958] NOIP2017 D2T1 奶酪

    题目链接 人生第一篇题解,多多关照吧. 注意事项: 1.多组数据,每次要先初始化. 2.因为涉及到开根,所以记得开double. 整体思路: 建图,判断「起点」与「终点」是否连通. 方法可选择搜索(我 ...

  3. mvc Dapper_Report_Down_ExcelFile

    一.基于Aspose.Cells.Dapper导出Excel Dapper的Query返回要不是对象的IEnumerable,要不是Dynamic的IEnumerable,都不适合不用反射就能够动态获 ...

  4. java提取SVN提交log

    http://wiki.svnkit.com/Printing_Out_Repository_History 这个介绍的相当详细. 总之就是要使用SVNKit包,下载地址.http://svnkit. ...

  5. [2009国家集训队]小Z的袜子(hose)(BZOJ2038+莫队入门题)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题目: 题意:中文题意,大家都懂. 思路:莫队入门题.不过由于要去概率,所以我们假 ...

  6. Spring Boot提供的特性

    一.导览 本文主要按以下模块介绍spring Boot(1.3.6.RELEASE)提供的特性. SpringApplication类 外部化配置 Profiles 日志 开发WEB应用 Securi ...

  7. core dump使用方法、设置、测试用例

    core dump使用方法.设置.测试用例 http://blog.csdn.net/liuzhuchen/article/details/21975227

  8. PHP下载APK文件

    PHP下载APK文件(代码如下) /** * //这里不要随便打印文字,否则会影响输出的文件的 * (例如下载没问题,但是apk安装时候提醒解析安装包错误) * @return array */ pu ...

  9. 2017多校第7场 HDU 6127 Hard challenge 极角排序,双指针

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6127 题意:平面直角坐标系上有n个整点,第i个点有一个点权val​,坐标为(xi,yi),其中不存在任 ...

  10. 【openjudge】C15C Rabbit's Festival CDQ分治+并查集

    题目链接:http://poj.openjudge.cn/practice/C15C/ 题意:n 点 m 边 k 天.每条边在某一天会消失(仅仅那一天消失).问每一天有多少对点可以相互到达. 解法:开 ...