转:http://www.cnblogs.com/elect-fans/archive/2012/05/14/2500643.html

0.NAND的操作管理方式

NAND FLASH的管理方式:以三星FLASH为例,一片Nand flash为一个设备(device),1 (Device) = xxxx (Blocks),1 (Block) = xxxx (Pages),1(Page) =528 (Bytes) = 数据块大小(512Bytes) + OOB 块大小(16Bytes,除OOB第六字节外,通常至少把OOB的前3个字节存放Nand Flash硬件ECC码)。

关于OOB区,是每个Page都有的。Page大小是512字节的NAND每页分配16字节的OOB;如果NAND物理上是2K的Page,则每个Page分配64字节的OOB。如下图:

以HYNIX为例,图中黑体的是实际探测到的NAND,是个2G bit(256M)的NAND。PgSize是2K字节,PgsPBlk表示每个BLOCK包含64页,那么每个BLOCK占用的字节数是 64X2K=128K字节;该NAND包好2048个BLOCK,那么可以算出NAND占用的字节数是2048X128K=256M,与实际相符。需要注 意的是SprSize就是OOB大小,也恰好是2K页所用的64字节。

1.为什么会出现坏块
    由于NAND Flash的工艺不能保证NAND的Memory
Array在其生命周期中保持性能的可靠,因此,在NAND的生产中及使用过程中会产生坏块。坏块的特性是:当编程/擦除这个块时,会造成Page
Program和Block Erase操作时的错误,相应地反映到Status Register的相应位。

2.坏块的分类
  
总体上,坏块可以分为两大类:(1)固有坏块:这是生产过程中产生的坏块,一般芯片原厂都会在出厂时都会将每个坏块第一个page的spare
area的第6个byte标记为不等于0xff的 值。(2)使用坏块:这是在NAND Flash使用过程中,如果Block Erase或者Page

Program错误,就可以简单地将这个块作为坏块来处理,这个时候需要把坏块标记起来。为了和固有坏块信息保持一致,将新发现的坏块的第一个page的
spare area的第6个Byte标记为非0xff的值。

3.坏块管理
    根据上面的这些叙述,可以了解NAND Flash出厂时在spare
area中已经反映出了坏块信息,因此, 如果在擦除一个块之前,一定要先check一下第一页的spare
area的第6个byte是否是0xff,如果是就证明这是一个好块,可以擦除;如果是非0xff,那么就不能擦除,以免将坏块标记擦掉。
当然,这样处理可能会犯一个错误―――“错杀伪坏块”,因为在芯片操作过程中可能由于
电压不稳定等偶然因素会造成NAND操作的错误。但是,为了数据的可靠性及软件设计的简单化,还是需要遵照这个标准。

可以用BBT:bad block
table,即坏块表来进行管理。各家对nand的坏块管理方法都有差异。比如专门用nand做存储的,会把bbt放到block0,因为第0块一定是好
的块。但是如果nand本身被用来boot,那么第0块就要存放程序,不能放bbt了。 有的把bbt放到最后一块,当然,这一块坚决不能为坏块。
bbt的大小跟nand大小有关,nand越大,需要的bbt也就越大。

需要注意的是:OOB是每个页都有的数据,里面存的有ECC(当然不仅仅);而BBT是一个FLASH才有一个;针对每个BLOCK的坏块识别则是该块第一页spare area的第六个字节。
4.坏块纠正

ECC: NAND
Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出
错。一般使用一种比较专用的校验——ECC。ECC能纠正单比特错误和检测双比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的
错误不保证能检测。
      ECC一般每256字节原始数据生成3字节ECC校验数据,这三字节共24比特分成两部分:6比特的列校验和16比特的行校验,多余的两个比特置1。(512生成两组ECC,共6字节) 
      当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的OOB
(out-
of-band)数据区中。其位置就是eccpos[]。校验的时候,根据上述ECC生成原理不难推断:将从OOB区中读出的原ECC校验和新ECC校验
和按位异或,若结果为0,则表示不存在错(或是出现了ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠
正;若3个字节异或结果中只存在1个比特位为1,表示OOB区出错;其他情况均表示出现了无法纠正的错误。
5.补充

(1)需要对前面由于Page
Program错误发现的坏块进行一下特别说明。如果在对一个块的某个page进行编程的时候发生了错误就要把这个块标记为坏块,首先就要把块里其他好的
面的内容备份到另外一个空的好块里面,然后,把这个块标记为坏块。当然,这可能会犯“错杀”之误,一个补救的办法,就是在进行完块备份之后,再将这个坏块
擦除一遍,如果Block Erase发生错误,那就证明这个块是个真正的坏块,那就毫不犹豫地将它打个“戳”吧!
(2)可能有人会问,为什么要使用每个块第一页的spare area的第六个byte作为坏块标记。这是NAND Flash生产商的默认约定,你可以看到Samsung,Toshiba,STMicroelectronics都是使用这个Byte作为坏块标记的。

(3)为什么好块用0xff来标记?因为Nand Flash的擦除即是将相应块的位全部变为1,写操作时只能把芯片每一位(bit)只能从1变为0,而不能从0变为1。0XFF这个值就是标识擦除成功,是好块。

bbt坏块管理
日月 发表于 - -- :: 推荐
前面看到在nand_scan()函数的最后将会跳至scan_bbt()函数,这个函数在nand_scan里面有定义:
if (!this->scan_bbt)
this->scan_bbt = nand_default_bbt;
nand_default_bbt()位于Nand_bbt.c文件中。
/**
* nand_default_bbt - [NAND Interface] Select a default bad block table for the device
* @mtd: MTD device structure
*
* This selects the default bad block table
* support for the device and calls the nand_scan_bbt
  **/
  int nand_default_bbt (struct mtd_info *mtd)
  {
   struct nand_chip *this = mtd->priv;
这个函数的作用是建立默认的坏块表。
/* Default for AG-AND. We must use a flash based
* bad block table as the devices have factory marked
* _good_ blocks. Erasing those blocks leads to loss
* of the good / bad information, so we _must_ store
* this information in a good / bad table during
* startup
*/
if (this->options & NAND_IS_AND) {
/* Use the default pattern deors */
if (!this->bbt_td) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
}
this->options |= NAND_USE_FLASH_BBT;
return nand_scan_bbt (mtd, &agand_flashbased);
}
如果Flash的类型是AG-AND(这种Flash类型比较特殊,既不是MLC又不是SLC,因此不去深究了,而且好像瑞萨要把它淘汰掉),需要使用默认的模式描述符,最后再进入nand_scan_bbt()函数。
/* Is a flash based bad block table requested ? */
if (this->options & NAND_USE_FLASH_BBT) {
/* Use the default pattern deors */
if (!this->bbt_td) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
}
if (!this->badblock_pattern) {
this->badblock_pattern = (mtd->oobblock > ) ?
&largepage_flashbased : &smallpage_flashbased;
}
} else {
this->bbt_td = NULL;
this->bbt_md = NULL;
if (!this->badblock_pattern) {
this->badblock_pattern = (mtd->oobblock > ) ?
&largepage_memorybased : &smallpage_memorybased;
}
} return nand_scan_bbt (mtd, this->badblock_pattern);
如果Flash芯片需要使用坏块表,对于1208芯片来说是使用smallpage_memorybased。
static struct nand_bbt_descr smallpage_memorybased = {
.options = NAND_BBT_SCAN2NDPAGE,
.offs = ,
.len = ,
.pattern = scan_ff_pattern
  };
暂时没看到如何使用这些赋值,先放着。后面检测坏块时用得着。
return nand_scan_bbt (mtd, this->badblock_pattern);
最后将badblock_pattern作为参数,调用nand_can_bbt函数。
/**
  * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
* @mtd: MTD device structure
* @bd: deor for the good/bad block search pattern
*
* The checks, if a bad block table(s) is/are already
* available. If not it scans the device for manufacturer
* marked good / bad blocks and writes the bad block table(s) to
* the selected place.
*
* The bad block table memory is allocated here. It must be freed
* by calling the nand_free_bbt .
*
  */
  int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
  {
检测、寻找、读取甚至建立坏块表。函数检测是否已经存在一张坏块表,否则建立一张。坏块表的内存分配也在这个函数中。
struct nand_chip *this = mtd->priv;
int len, res = ;
uint8_t *buf;
struct nand_bbt_descr *td = this->bbt_td;
struct nand_bbt_descr *md = this->bbt_md;
len = mtd->size >> (this->bbt_erase_shift + );
/* Allocate memory (2bit per block) */
this->bbt = kmalloc (len, GFP_KERNEL);
if (!this->bbt) {
printk (KERN_ERR "nand_scan_bbt: Out of memory/n");
return -ENOMEM;
}
/* Clear the memory bad block table */
memset (this->bbt, 0x00, len);
一些赋值、变量声明、内存分配,每个block分配2bit的空间。1208有4096个block,应该分配4096*2bit的空间。
/* If no primary table decriptor is given, scan the device
* to build a memory based bad block table
*/
if (!td) {
if ((res = nand_memory_bbt(mtd, bd))) {
    printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT/n");
kfree (this->bbt);
this->bbt = NULL;
}
return res;
}
如果没有提供ptd,就扫描设备并建立一张。这里调用了nand_memory_bbt()这个内联函数。
/**
* nand_memory_bbt - [GENERIC] create a memory based bad block table
* @mtd: MTD device structure
* @bd: deor for the good/bad block search pattern
*
* The creates a memory based bbt by scanning the device
* for manufacturer / software marked good / bad blocks
  */
  static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
  {
struct nand_chip *this = mtd->priv;
bd->options &= ~NAND_BBT_SCANEMPTY;
return create_bbt (mtd, this->data_buf, bd, -);
  }
函数的作用是建立一张基于memory的坏块表。
将操作符的NAND_BBT_SCANEMPTY清除,并继续调用creat_bbt()函数。
/**
  * create_bbt - [GENERIC] Create a bad block table by scanning the device
* @mtd: MTD device structure
* @buf: temporary buffer
* @bd: deor for the good/bad block search pattern
* @chip: create the table for a specific chip, -1 read all chips.
* Applies only if NAND_BBT_PERCHIP option is set
*
* Create a bad block table by scanning the device
* for the given good/bad block identify pattern
*/
  static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
  {
真正的建立坏块表函数。chip参数是-1表示读取所有的芯片。
struct nand_chip *this = mtd->priv;
int i, j, numblocks, len, scanlen;
int startblock;
loff_t from;
size_t readlen, ooblen;
printk (KERN_INFO "Scanning device for bad blocks/n");
一些变量声明,开机时那句话就是在这儿打印出来的。
if (bd->options & NAND_BBT_SCANALLPAGES)
len = << (this->bbt_erase_shift - this->page_shift);
else {
if (bd->options & NAND_BBT_SCAN2NDPAGE)
len = ;
else
len = ;
}
在前面我们定义了smallpage_memorybased这个结构体,现在里面NAND_BBT_SCANALLPAGES的终于用上了,对于1208芯片来说,len=。
if (!(bd->options & NAND_BBT_SCANEMPTY)) {
/* We need only read few bytes from the OOB area */
scanlen = ooblen = ;
readlen = bd->len;
} else {
/* Full page content should be read */
scanlen = mtd->oobblock + mtd->oobsize;
readlen = len * mtd->oobblock;
ooblen = len * mtd->oobsize;
}
前面已经将NAND_BBT_SCANEMPTY清除了,这里肯定执行else的内容。需要将一页内容都读取出来。
if (chip == -) {
/* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
* makes shifting and masking less painful */
numblocks = mtd->size >> (this->bbt_erase_shift - );
startblock = ;
from = ;
} else {
if (chip >= this->numchips) {
printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)/n",
chip + , this->numchips);
return -EINVAL;
}
numblocks = this->chipsize >> (this->bbt_erase_shift - );
startblock = chip * numblocks;
numblocks += startblock;
from = startblock << (this->bbt_erase_shift - );
}
前面提到chip为-,实际上我们只有一颗芯片,numblocks这儿是4096*。
for (i = startblock; i < numblocks;) {
int ret;
if (bd->options & NAND_BBT_SCANEMPTY)
if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen)))
return ret;
for (j = ; j < len; j++) {
if (!(bd->options & NAND_BBT_SCANEMPTY)) {
size_t retlen;
/* Read the full oob until read_oob is fixed to
* handle single byte reads for 16 bit buswidth */
ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
mtd->oobsize, &retlen, buf);
if (ret)
return ret;
if (check_short_pattern (buf, bd)) {
this->bbt[i >> ] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
i >> , (unsigned int) from);
break;
}
} else {
if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> ] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
i >> , (unsigned int) from);
break;
}
}
}
i += ;
from += ( << this->bbt_erase_shift);
}
return ;
检测这4096个block,刚开始的nand_read_raw肯定不会执行。len是2,在j循环要循环2次。
每次循环真正要做的事情是下面的内容:
ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf);
read_oob()函数在nand_scan()里被指向nand_read_oob(),这个函数在Nand_base.c文件中,看来得回Nand_base.c看看了。
/**
* nand_read_oob - [MTD Interface] NAND read out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* NAND read out-of-band data from the spare area
*/
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
  {
才发现oob全称是out-of-band, from是偏移量,len是读取的长度,retlen是存储指针。
int i, col, page, chipnr;
struct nand_chip *this = mtd->priv;
int blockcheck = ( << (this->phys_erase_shift - this->page_shift)) - ;
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i/n", (unsigned int) from, (int) len);
/* Shift to get page */
page = (int)(from >> this->page_shift);
chipnr = (int)(from >> this->chip_shift);
/* Mask to get column */
col = from & (mtd->oobsize - );
/* Initialize return length value */
*retlen = ;
一些初始化,blockcheck对于1208应该是(<<(0xe-0x9)-)=。然后通过偏移量计算出要读取oob区的page,chipnr和col。
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device/n");
*retlen = ;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd , FL_READING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
/* Send the read command */
this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
不允许非法的读取,获取芯片控制权,发送读取OOB命令,这儿会调用具体硬件驱动中相关的Nand控制函数。
/*
* Read the data, if we read more than one page
* oob data, let the device transfer the data !
*/
i = ;
while (i < len) {
int thislen = mtd->oobsize - col;
thislen = min_t(int, thislen, len);
this->read_buf(mtd, &buf[i], thislen);
i += thislen;
/* Read more ? */
if (i < len) {
page++;
col = ;
/* Check, if we cross a chip boundary */
if (!(page & this->pagemask)) {
chipnr++;
this->select_chip(mtd, -);
this->select_chip(mtd, chipnr);
}
/* Apply delay or wait for ready/busy pin
* Do this before the AUTOINCR check, so no problems
* arise if a chip which does auto increment
* is marked as NOAUTOINCR by the board driver.
*/
if (!this->dev_ready)
udelay (this->chip_delay);
else
nand_wait_ready(mtd);
/* Check, if the chip supports auto page increment
* or if we have hit a block boundary.
*/
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
/* For subsequent page reads set offset to 0 */
this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
}
}
}
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
/* Return happy */
*retlen = len;
return ;
开始读取数据,while循环只要获取到oob区大小的数据即可。注意,read_buf才是最底层的读写Nand的函数,在我们的驱动中根据参数可以实现读取528byte全部内容,或者16byte的oob区。
如果一次没读完,就要继续再读,根据我们实际使用经验好像没出现过这种问题。
最后Return Happy~回到Nand_bbt.c的creat_bbt()函数,348行,好像都快忘记我们还没出creat_bbt()函数呢,我再把他贴一遍吧:
/* Read the full oob until read_oob is fixed to
* handle single byte reads for 16 bit buswidth */
ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
mtd->oobsize, &retlen, buf);
if (ret)
return ret;
if (check_short_pattern (buf, bd)) {
this->bbt[i >> ] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
i >> , (unsigned int) from);
break;
}
} else {
if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> ] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
i >> , (unsigned int) from);
break;
}
}
}
i += ;
from += ( << this->bbt_erase_shift);
}
return ;
  }
刚刚如果不是Ruturn Happy,下面的352行就会返回错误了。接着会调用check_short_pattern()这个函数。
/**
* check_short_pattern - [GENERIC] check if a pattern is in the buffer
* @buf: the buffer to search
* @td: search pattern deor
*
* Check for a pattern at the given place. Used to search bad block
* tables and good / bad block identifiers. Same as check_pattern, but
* no optional empty check
*
  */
  static int check_short_pattern (uint8_t *buf, struct nand_bbt_descr *td)
{
int i;
uint8_t *p = buf;
/* Compare the pattern */
for (i = ; i < td->len; i++) {
if (p[td->offs + i] != td->pattern[i])
return -;
}
return ;
}
检查读到的oob区是不是坏块就靠这个函数了。前面放了好久的struct nand_bbt_descr smallpage_memorybased终于用上了,挨个对比,有一个不一样直接返回-,坏块就这样产生了。下面会将坏块的位置打印出来,并且将坏块记录在bbt表里面,在nand_scan_bbt()函数的开始我们就为bbt申请了空间。
this->bbt[i >> ] |= 0x03 << (i & 0x6);
为啥要右移3bit呢?首先i要右移1bit,因为前面乘以了2。由于没个block占用2bit的空间,一个char变量8bit,所以还再要右移2bit吧。
  下面的check_pattern()函数调用不到的。
依次检测完所有block,creat_bbt()函数也顺利返回。
这样nand_memory_bbt()函数也正确返回。
接着是nand_scan_bbt()同样顺利结束。
最后nand_default_bbt()完成。
整个nand_scan()的工作终于完成咯,好长。
 

MTD的坏块管理(一)-快速了解MTD的坏块管理

由 于NAND Flash的现有工艺不能保证NAND的Memory
Array在其生命周期中保持性能的可靠,因此在NAND芯片出厂的时候,厂家只能保证block
0不是坏块,对于其它block,则均有可能存在坏块,而且NAND芯片在使用的过程中也很容易产生坏块。因此,我们在读写NAND FLASH
的时候,需要检测坏块,同时还需在NAND驱动中加入坏块管理的功能。 
NAND驱动在加载的时候,会调用nand_scan函数,对bad block table的搜寻,建立等操作就是在这个函数的第二部分,即nand_scan_tail函数中完成的。 

nand_scan_tail函数中,会首先检查struct
nand_chip结构体中的options成员变量是否被赋上了NAND_SKIP_BBTSCAN,这个宏表示跳过扫描bbt。所以,只有当你的
driver中没有为options定义NAND_SKIP_BBTSCAN时,MTD才会继续与bbt相关工作,即调用struct
nand_chip中的scan_bbt函数指针所指向的函数,在MTD中,这个函数指针指向nand_default_bbt函数。 
bbt
有两种存储
方式,一种是把bbt存储在NAND芯片中,另一种是把bbt存储在内存中。对于前者,好处是驱动加载更快,因为它只会在第一次加载NAND驱动时扫描整

个NAND芯片,然后在NAND芯片的某个block中建立bbt,坏处是需要至少消耗NAND芯片一个block的存储容量;而对于后者,好处是不会耗

用NAND芯片的容量,坏处是驱动加载稍慢,因为存储在内存中的bbt每次断电后都不会保存,所以在每次加载NAND驱动时,都会扫描整个NAND芯片,
以便建立bbt。 
如果你系统中的NAND芯片容量不是太大的话,我建议还是把bbt存储在内存中比较好,因为根据本人的使用经验,对一块容量为2G bits的NAND芯片,分别采用这两种存储方式的驱动的加载速度相差不大,甚至几乎感觉不出来。 
建立bbt后,以后在做擦除等操作时,就不用每次都去验证当前block是否是个坏块了,因为从bbt中就可以得到这个信息。另外,若在读写等操作时,发现产生了新的坏块,那么除了标志这个block是个坏块外,也还需更新bbt。 
接下来,介绍一下MTD是如何查找或者建立bbt的。 
1、MTD中与bbt相关的结构体 
struct
nand_chip中的scan_bbt函数指针所指向的函数,即nand_default_bbt函数会首先检查struct
nand_chip中options成员变量,如果当前NAND芯片是AG-AND类型的,会强制把bbt存储在NAND芯片中,因为这种类型的NAND
芯片中含有厂家标注的“好块”信息,擦除这些block时会导致丢失坏块信息。 
接着
nand_default_bbt函数会再次检查struct
nand_chip中options成员变量,根据它是否定义了NAND_USE_FLASH_BBT,而为struct
nand_chip中3个与bbt相关的结构体附上不同的值,然后再统一调用nand_scan_bbt函数,nand_scan_bbt函数会那3个结
构体的不同的值做不同的动作,或者把bbt存储在NAND芯片中,或者把bbt存储在内存中。

在struct nand_chip中与bbt相关的结构体如下:

struct nand_chip {

    ……

uint8_t     *bbt

struct nand_bbt_descr    *bbt_td;

struct nand_bbt_descr    *bbt_md;

struct nand_bbt_descr    *badblock_pattern;

……

};

bbt指向
一块在nand_default_bbt函数中分配的内存,若options中没有定义NAND_USE_FLASH_BBT,MTD就直接在bbt指向

的内存中建立bbt,否则就会先从NAND芯片中查找bbt是否存在,若存在,就把bbt的内容读出来并保存到bbt指向的内存中,若不存在,则在bbt
指向的内存中建立bbt,最后把它写入到NAND芯片中去。 
bbt_td、bbt_md和badblock_pattern就是在nand_default_bbt函数中赋值的3个结构体。它们虽然是相同的结构体类型,但却有不同的作用和含义。


中bbt_td和bbt_md是主bbt和镜像bbt的描述符(镜像bbt主要用来对bbt的update和备份),它们只在把bbt存储在NAND芯片
的情况下使用,用来从NAND芯片中查找bbt。若bbt存储在内存中,bbt_td和bbt_md将会被赋值为NULL。 
badblock_pattern就是坏块信息的pattern,其中定义了坏块信息在oob中的存储位置,以及内容(即用什么值表示这个block是个坏块)。 

常用1或2个字节来标志一个block是否为坏块,这1或2个字节就是坏块信息,如果这1或2个字节的内容是0xff,那就说明这个block是好的,否
则就是坏块。对于坏块信息在NAND芯片中的存储位置,small page(每页512 Byte)和big page(每页2048
Byte)的两种NAND芯片不尽相同。一般来说,small
page的NAND芯片,坏块信息存储在每个block的第一个page的oob的第六个字节中,而big
page的NAND芯片,坏块信息存储在每个block的第一个page的oob的第1和第2个字节中。 

不能确定是否所有的NAND芯片都是如此布局,但应该绝大多数NAND芯片是这样的,不过,即使某种NAND芯片的坏块信息不是这样的存储方式也没关系,

因为我们可以在badblock_pattern中自己指定坏块信息的存储位置,以及用什么值来标志坏块(其实这个值表示的应该是“好块”,因为MTD会
把从oob中坏块信息存储位置读出的内容与这个值做比较,若相等,则表示是个“好块”,否则就是坏块)。

bbt_td、bbt_md和badblock_pattern的结构体类型定义如下:

struct nand_bbt_descr {

    int    options;

int    pages[NAND_MAX_CHIPS];

int    offs;

int    veroffs;

uint8_t    version[NAND_MAX_CHIPS];

int    len;

int    maxblocks;

int    reserved_block_code;

uint8_t    *pattern;

};

options:bad block table或者bad block的选项,可用的选择以及各选项具体表示什么含义,可以参考<linux/mtd/nand.h>。 
pages:bbt
专用。在查找bbt的时候,若找到了bbt,就把bbt所在的page号保存在这个成员变量中。若没找到bbt,就会把新建立的bbt的保存位置赋值给

它。因为系统中可能会有多个NAND芯片,我们可以为每一片NAND芯片建立一个bbt,也可以只在其中一片NAND芯片中建立唯一的一个bbt,所以这
里的pages是个维数为NAND_MAX_CHIPS的数值,用来保存每一片NAND芯片的bbt位置。当然,若只建立了一个bbt,那么就只使用
pages[0]。 
offs、len和pattern:MTD会从oob的offs中读出len长度的内容,然后与pattern指针指向的内容做比较,若相等,则表示找到了bbt,或者表示这个block是好的。 
veroffs和version:bbt专用。MTD会从oob的veroffs中读出一个字节的内容,作为bbt的版本值保存在version中。 
maxblocks:bbt专用。MTD在查找bbt的时候,不会查找NAND芯片中所有的block,而是最多查找maxblocks个block。 
2、bbt存储在内存中时的工作流程 
前文说过,不管bbt是存储在NAND芯片中,还是存储在内存中,nand_default_bbt函数都会调用nand_scan_bbt函数。 
nand_scan_bbt
函数会判断bbt_td的值,若是NULL,则表示bbt存储在内存中,它就在调用nand_memory_bbt函数后返回。
nand_memory_bbt函数的主要工作就是在内存中建立bbt,其实就是调用了create_bbt函数。 
create_bbt
函数的工作方式很简单,就是扫描NAND芯片所有的block,读取每个block中第一个page的oob内容,然后根据oob中的坏块信息建立起
bbt,可以参见上节关于struct nand_bbt_descr中的offs、len和pattern成员变量的解释。 
3、bbt存储在NAND芯片时的工作流程 
相对于把bbt存储在内存中,这种方式的工作流程稍显复杂一点。 
nand_scan_bbt函数首先从NAND芯片中读取bbt的内容,它读取的方式分为两种: 

一是调用read_abs_bbts函数直接从给定的page地址读取,那么这个page地址在什么时候指定呢?就是在你的NAND
driver中指定。前文说过,在struct
nand_chip结构体中有两个成员变量,分别是bbt_td和bbt_md,MTD为它们附上了default的值,但是你也可以根据你的需要为它们
附上你自己定义的值。假如你为bbt_td和bbt_md的options成员变量定义了NAND_BBT_ABSPAGE,同时又把你的bbt所在的

page地址保存在bbt_td和bbt_md的pages成员变量中,MTD就可以直接在这个page地址中读取bbt了。值得一提的是,在实际使用时
一般不这么干,因为你不能保证你保存bbt的那个block就永远不会坏,而且这样也不灵活;

其二是调用那个search_read_bbts函数试着在NAND芯片的maxblocks(请见上文关于struct nand_bbt_descr中maxblocks的说明)个block中查找bbt是否存在,若找到,就可以读取bbt了。 
MTD
查找bbt的过程为:如果你在bbt_td和bbt_md的options 成员变量中定义了
NAND_BBT_LASTBLOCK,那么MTD就会从NAND芯片的最后一个block开始查找(在default情况下,MTD就是这么干的),否
则就从第一个block开始查找。 

查找oob中的坏块信息时类似,MTD会从所查找block的第一个page的oob中读取内容,然后与bbt_td或bbt_md中patter指向的

内容做比较,若相等,则表示找到了bbt,否则就继续查找下一个block。顺利的情况下,只需查找一个block中就可以找到bbt,否则MTD最多会
查找maxblocks个block。

若找到了bbt,就把该bbt所在的page地址保存到bbt_td或bbt_md的pages成员变量中,否则pages的值为-1。 
如果系统中有多片NAND芯片,并且为每一片NAND芯片都建立一个bbt,那么就会在每片NAND芯片上重复以上过程。 

着,nand_scan_bbt函数会调用check_create函数,该函数会判断是否找到了bbt,其实就是判断bbt_td或者bbt_md中
pages成员变量的值是否有效。若找到了bbt,就会把bbt从NAND芯片中读取出来,并保存到struct
nand_chip中bbt指针指向的内存中;若没找到,就会调用create_bbt函数建立bbt(与bbt存储在内存中时情况一样),同时把bbt
写入到NAND芯片中去。

MTD坏块管理(二)-内核获取Nandflash的参数过程

MTD坏块管理机制中,起着核心作用的数据结构是nand_chip,在此以TCC8900-Linux中MTD的坏块管理为例作一次介绍。

MTD在Linux内核中同样以模块的形式被启用,TCC_MTD_IO_Init()函数完成了nand_chip初始化、mtd_info初始注册,

坏块表的管理机制建立等工作。

nand_chip在TCC_MTD_IO_Init函数中的实例名称是this,mtd_info 的实例名称为TCC_mtd,这里有一个比较巧妙的处理方法:

TCC_mtd=kmalloc(sizeof(struct mtd_info)+sizeof(struct nand_chip),GFP_KERNEL);

this=(struct nand_chip*)(&TCC_mtd[1]);

在以后的操作中,只需得知TCC_mtd即可找到对应的nan_chip实例。

获得必要的信息后(包括nand_chip方法的绑定),流程进入nand_scan(TCC_mtd,1).

nand_scan(struct mdt_info *mtd, int maxchips);

调用nand_scan_ident(mtd,maxchips)和nand_scan_tail(mtd);

nand_scan_ident(...)调用了一个很重要的函数:nand_get_flash_type(...)

*从nand_get_flash_type(...)函数中可以看出每个nandflash前几个字节所代表的意思都是约定好了的:

第一个字节:制造商ID

第二个字节:设备ID

第三个字节:MLC 数据

第四个字节:extid (比较总要)

其中设备ID是访问nand_flash_ids表的参照,该表在drivers/mtd/nand/nand_ids.c中定义

Linux内核在nand_flash_ids参照表中,通过匹配上述设备ID来查找nandflash的详细信息,

nand_flash_ids中的举例如下:

struct nand_flash_dev nand_flash_ids[]={

......

{"NAND 16MiB 1,8V 8-bit",   0x33, 512, 16, 0x4000, 0},

{"NAND 16MiB 3,3V 8-bit",   0x73, 512, 16, 0x4000, 0},

{"NAND 16MiB 1,8V 16-bit",  0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},

{"NAND 16MiB 3,3V 16-bit",  0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},

......

}

466 struct nand_flash_dev {

467     char *name;

468     int id;

469     unsigned long pagesize;

470     unsigned long chipsize;

471     unsigned long erasesize;

472     unsigned long options;

473 };

值得一提的是,MTD子系统会把从nand_flash_ids表中找到的chipsize复制给mtd->size,这在有些应用中显得不合适,

在有些方案中,并不是把nandflash的所有存储空间都划分为MTD分区,Telechips的TCC89XX方案就是这样,4G的nandflash

上,可以划分任意大小的MTD分区,错误的mtd->size的后果非常严重,造成系统启动慢,整个MTD的坏块管理机制瘫痪等等。

随后,nand_get_flash_type通过extid计算出了以下信息:

mtd可写区大小:mtd->writesize=1024<<(extid&0x03);

这里可以看成1024*(1*2的(extid&0x03)次方),

mtdoob区大小:extid>>=2;mtd->oobsize = (8<<(extid&0x1))*(mtd->writesize>>9);

每512字节对应(8*2的(extid&0x1)次方)字节oob数据

mtd擦写块大小:extid>>=2;mtd->erasesize=(64*1024)<<(extid&0x03);

nand数据宽度 :extid>>=2;busw=(extid&0x01)?NAND_BUSEWIDTH_16:0; 现在大多为8位数据宽度

可以看出第四个字节extid的意义:

高|0    |  0        |   00        | 0   | 0         |  00           |低

|无用|数据宽度|擦写块算阶|无用|oob算阶|  可写区算阶|

nand_get_flash_type(...)还确立了nandflash中的坏块标记在oob信息中的位置:

if(mtd->writesize>512||(busw&NAND_BUSWIDTH_16))

chip->badblockpos = NAND_LARGE_BADBLOCKS_POS;//大页面flash的坏块信息存储地址为oob信息中的第1个字节开始处

else

chip->badblockpos = NAND_SMALL_BADBLOCKS_POS;//大页面flash的坏块信息存储地址为oob信息中的第6个字节开始处

对于Samsun和Hynix的MLC型nandflash,坏块标记所在的页是每块的最后一个页,而Samsung,Hynix,和AMD的SLC型nandflash

中,坏块标记分别保存在每块开始的第1,2个页中,其他型号的nandflash大多都保存在第一个也中,为此需要作下标记:

坏块标记保存在块的最后一页中:chip->options |= NAND_BBT_SCANLASTPAGE;

坏块标记保存在块的第1,2页中 :chip->options |= NAND_BBT_SCAN2NDPAGE;

nand_scan之后调用nand_scan_tail(mtd)函数,

nand_scan_tail(...)函数主要完成MTD实例中各种方法的绑定,例如:

3338     mtd->read = nand_read;

3339     mtd->write = nand_write;

3340     mtd->panic_write = panic_nand_write;

3341     mtd->read_oob = nand_read_oob;

3342     mtd->write_oob = nand_write_oob;

3343     mtd->sync = nand_sync;

nand_scan_tail(...)调用chip->scan_bbt()完成坏块表的有关操作。

chip->scan_bbt的绑定过程是在nand_scan_ident()->nand_set_defaults():chip->scan_bbt = nand_default_bbt.

即真正用于坏块操作的是nand_default_bbt函数,该函数在nand_bbt.c中被定义。

nand flash坏块管理OOB,BBT,ECC的更多相关文章

  1. 【转】nand flash坏块管理OOB,BBT,ECC

    0.NAND的操作管理方式      NAND FLASH的管理方式:以三星FLASH为例,一片Nand flash为一个设备(device),1 (Device) = xxxx (Blocks),1 ...

  2. STM32下FatFs的移植,实现了坏块管理,硬件ECC,ECC纠错,并进行擦写均衡分析

    最近因项目需要,做一个数据采集的单片机平台.需要移植 FatFs .现在把最后成果贴上来. 1.摘要 在 STM32 单片机上,成功移植 FatFs 0.12b,使用的 Nand Flash 芯片为 ...

  3. nand flash 的oob 及坏块管理

    0.NAND的操作管理方式      NAND FLASH的管理方式:以三星FLASH为例,一片Nand flash为一个设备(device),1 (Device) = xxxx (Blocks),1 ...

  4. Nand: OOB BBT ECC PEB LEB

    OBB: 例如Samsung K9F1208U0B,数据存储容量为64MB,采用块页式存储管理.8个I/O 引脚充当数据.地址.命令的复用端口.芯片内部存储布局及存储操作特点: 一片Nand flas ...

  5. Nand Flash基础知识与坏块管理机制的研究

    概述 Flash名称的由来,Flash的擦除操作是以block块为单位的,与此相对应的是其他很多存储设备,是以bit位为最小读取/写入的单位,Flash是一次性地擦除整个块:在发送一个擦除命令后,一次 ...

  6. NAND Flash大容量存储器K9F1G08U的坏块管理方法

    转: http://www.360doc.com/content/11/0915/10/7715138_148381804.shtml 在进行数据存储的时候,我们需要保证数据的完整性,而NAND Fl ...

  7. 坏块管理(Bad Block Management,BBM)

    看了很多坏块管理的文章,加上自己的理解,把整个坏块管理做了个总结. 坏块分类 1.出厂坏块 又叫初始坏块,厂商会给点最小有效块值(NVB,mininum number of valid blocks) ...

  8. BBM(Bad Block Management)坏块管理

    不管WL算法如何高明,在使用中都会碰到一个头痛的问题,那就是坏块,所以一个SSD必须要有坏块管理机制.何谓坏块?一个闪存块里包含有不稳定的地址,不能保证读/写/擦时数据的准确性.            ...

  9. nand flash 扇区的管理以及初始化

    (1)首先需要了解NAND FLASH的结构.如图: 以镁光MT29F4G08BxB Nand Flash为例,这款Flash(如上图)以4个扇区(sector)组成1个页(page),64个页(pa ...

随机推荐

  1. Bookmarks www

    Bookmarks alexis- (Alex Incogito) - Repositories · GitHub GitHub - aetcnc-Arduino_DeltaHMI_RS485 Ope ...

  2. freemark学习

    学习地址: http://blog.csdn.net/hejinxu/article/details/6694890   对freemarker的用法与语法进行了详细的讲解 http://freema ...

  3. 坐标转换——GCJ-02

    WGS84(World Geodetic System 1984),是为GPS 全球定位系统 使用而建立的坐标系统GCJ-02,我国在WGS84的基础上加密得到BD-09,百度坐标在GCJ-02基础上 ...

  4. FineReport——FS

    FR除了能够实现对报表等的二次开发,还能实现对决策系统的操作: FS.Trans.signOut() 退出决策平台系统 FS.tabPane._doCloseTab(FS.tabPane._getSe ...

  5. javascript 实现图片拖动

    javascript实现图片拖动效果并不难,主要的思路如下 1:给图片绑定监听鼠标按下对象,设置拖动属性为true 2:鼠标抬起:拖动属性为false 鼠标移动:改变坐标即可,新坐标=图片原始坐标+鼠 ...

  6. mybatis多表查询,自动生成id

    主要是在配置文件中,配置好所要包含的字段. 类关系:account----role,1对1 account包含role类 java类: public class Account{ private In ...

  7. CMDB (后台管理) CURD 插件

    查 a. 基本实现 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  8. Python Flask 配置文件

    1. 什么是配置文件? 就是当程序调用的一些参数,文件路径,方法或者类放到一个文件中, 当下次需要修改的一个参数的时候,不用再从所有关联的程序中找到该参数挨个修改, 比较繁琐.像Django中,程序启 ...

  9. hdu 1664(数论+同余搜索+记录路径)

    Different Digits Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  10. 【剑指offer】面试题 11. 旋转数组的最小数字

    面试题 11. 旋转数组的最小数字 题目描述 题目:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4, ...