https://www.lydsy.com/JudgeOnline/problem.php?id=2395

有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值v=n-1条边的费用和*n-1条边的时间和,你的任务是求一个方案使得v最小

参考:https://www.cnblogs.com/autsky-jadek/p/3959446.html

参考说的太详细了,还配了图,读不懂的应该不存在吧,已经没什么好说的了。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int M=1e4+;
const int INF=1e9;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int u,v,c,t,w;
}e[M];
struct point{
int x,y;
};
int n,m,fa[N];
point ans=(point){INF,INF};
inline bool cmp(node a,node b){
return a.w<b.w;
}
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
inline void unionn(int u,int v){
fa[u]=v;
}
point kruscal(){
int cnt=;
point now=(point){,};
for(int i=;i<n;i++)fa[i]=i;
for(int i=;i<=m;i++){
int u=e[i].u,v=e[i].v;
u=find(u);v=find(v);
if(u!=v){
unionn(u,v);
cnt++;
now.x+=e[i].c;now.y+=e[i].t;
if(cnt==n-)break;
}
}
ll maxn=(ll)ans.x*ans.y,tmp=(ll)now.x*now.y;
if(maxn>tmp||(maxn==tmp&&ans.x>now.x))ans=now;
return now;
}
inline point getmag(point a,point b){
point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline int multiX(point a,point b){
return a.x*b.y-b.x*a.y;
}
void work(point l,point r){
for(int i=;i<=m;i++)
e[i].w=e[i].t*(r.x-l.x)+e[i].c*(l.y-r.y);
sort(e+,e+m+,cmp);
point mid=kruscal();
if(multiX(getmag(mid,l),getmag(mid,r))>=)return;
work(l,mid);work(mid,r);
}
int main(){
n=read(),m=read();
for(int i=;i<=m;i++){
e[i].u=read(),e[i].v=read();
e[i].c=read(),e[i].t=read();
}
for(int i=;i<=m;i++)e[i].w=e[i].c;
sort(e+,e+m+,cmp);
point p1=kruscal();
for(int i=;i<=m;i++)e[i].w=e[i].t;
sort(e+,e+m+,cmp);
point p2=kruscal();
work(p1,p2);
printf("%d %d\n",ans.x,ans.y);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ2395:[Balkan 2011]Timeismoney——题解的更多相关文章

  1. bzoj2395: [Balkan 2011]Timeismoney

    Description      有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值v=n-1条边 ...

  2. BZOJ2395 [Balkan 2011]Timeismoney 【最小乘积生成树】

    题目链接 BZOJ2395 题意:无向图中每条边有两种权值,定义一个生成树的权值为两种权值各自的和的积 求权值最小的生成树 题解 如果我们将一个生成树的权值看做坐标,那么每一个生成树就对应一个二维平面 ...

  3. 【最小乘积生成树】bzoj2395[Balkan 2011]Timeismoney

    设每个点有x,y两个权值,求一棵生成树,使得sigma(x[i])*sigma(y[i])最小. 设每棵生成树为坐标系上的一个点,sigma(x[i])为横坐标,sigma(y[i])为纵坐标.则问题 ...

  4. bzoj2395 [Balkan 2011]Timeismoney(最小乘积生成树+计算几何)

    题意 每条边有两个权值\(c,t\),请求出一颗生成树,使得\(\sum c\times \sum t\)最小 题解 为什么生成树会和计算几何扯上关系-- 对于每棵树,设\(x=c,y=t\),我们可 ...

  5. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  6. Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)

    问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...

  7. 【BZOJ2395】[Balkan 2011]Timeismoney

    [BZOJ2395][Balkan 2011]Timeismoney 题面 \(darkbzoj\) 题解 如果我们只有一个条件要满足的话直接最小生成树就可以了,但是现在我们有两维啊... 我们将每个 ...

  8. 【BZOJ】2395: [Balkan 2011]Timeismoney

    题解 最小乘积生成树! 我们把,x的总和和y的总和作为x坐标和y左边,画在坐标系上 我们选择两个初始点,一个是最靠近y轴的A,也就是x总和最小,一个是最靠近x轴的B,也就是y总和最小 连接两条直线,在 ...

  9. BZOJ 2395 [Balkan 2011]Timeismoney(最小乘积生成树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2395 [题目大意] 给出一张无向图,每条边上有a,b两个值,求生成树, 使得suma* ...

随机推荐

  1. 在Win10中通过命令行打开UWP应用

    近期由于需要在WinX菜单中添加几个UWP应用,但发现很难找到相应的命令行,Universal Apps 的快捷方式属性里也没有. 于是到网上搜了很久才找到一个E文的页面,试了一下确实可行,分享给大家 ...

  2. 一种新的自动化 UI 测试解决方案 Airtest Project

    今天分享一个自动化UI测试工具airtest——一款网易出品的基于图像识别面向游UI测试的工具,也支持原生Android App基于元素识别的UI自动化测试.主要包含了三部分:Airtest IDE. ...

  3. 分布式部署Apache-Jmeter粗略流程

    注意事项 Windows版和Mac版Jmeter可互相通信 确认被部署的机器安装有JDK并已配置好环境变量 Controller安装 1. 安装Jmeter,监视插件JMeterPlugins-Sta ...

  4. 变量不加 var 声明——掉进坑中,无法自拔!

    整整一下午,都在解决 window.onresize 中方法丢失不执行的问题!姿势固定在电脑前,颈椎病都犯了. 前些日子与大家分享了一下关于 防止jquery $(window).resize()多次 ...

  5. 解决jQuery不同版同时引用的冲突

    今天研发的同事在开发一个新jQuery插件时,遇到一个揪心的问题.平台以前使用的 jQuery版本是1.2.6,偶,天啊!这是古代的版本啊! 由于很多功能基于老版本,不能删除啊,同志们都懂的! 于是我 ...

  6. bug 调试

    系统性能分析中,CPU.内存和 IO 是主要关注项.----系统层面 1. 对于 CPU,如果是常见的 Linux,可以先用 top 命令查看负载状况. top -H  -p [pid] pstree ...

  7. Java三种编译方式

    Java程序代码需要编译后才能在虚拟机中运行,编译涉及到非常多的知识层面:编译原理.语言规范.虚拟机规范.本地机器码优化等:了解编译过程有利于了解整个Java运行机制,不仅可以使得我们编写出更优秀的代 ...

  8. 莱布尼兹三角形(C++)

    [问题描述] 如下图所示的三角形,请编程输出图中排在第 n 行从左边数第 m 个位置上的数. [代码展示] # include<iostream># include<cstdio&g ...

  9. Trie 树——搜索关键词提示

    当你在搜索引擎中输入想要搜索的一部分内容时,搜索引擎就会自动弹出下拉框,里面是各种关键词提示,这个功能是怎么实现的呢?其实底层最基本的就是 Trie 树这种数据结构. 1. 什么是 "Tri ...

  10. activiti工作流已办和待办查询sql

    最近项目中遇到一个问题,需要activiti的工作流表和业务表关联分页查询,然而我对于工作流的查询并不太熟悉,所以学习并总结如下. 想看看activiti到底怎么查询的待认领和待办.已办的查询sql, ...